Update README.md
Browse files
README.md
CHANGED
|
@@ -1,18 +1,21 @@
|
|
| 1 |
-
# Mineral Nano 1
|
| 2 |
|
| 3 |
-
Mineral Nano 1 is a compact, efficient language model designed for fast inference and low-resource environments.
|
| 4 |
|
| 5 |
## Model Details
|
| 6 |
|
| 7 |
- **Model Name:** mineral-nano-1
|
| 8 |
-
- **Model Type:**
|
| 9 |
-
- **Parameters:** ~
|
| 10 |
- **Context Length:** 2048 tokens
|
| 11 |
-
- **Architecture:** Transformer-based decoder with 12 layers
|
| 12 |
- **Precision:** BFloat16
|
|
|
|
|
|
|
| 13 |
|
| 14 |
## Architecture
|
| 15 |
|
|
|
|
| 16 |
- **Hidden Size:** 768
|
| 17 |
- **Intermediate Size:** 3072
|
| 18 |
- **Attention Heads:** 12
|
|
@@ -20,59 +23,148 @@ Mineral Nano 1 is a compact, efficient language model designed for fast inferenc
|
|
| 20 |
- **Vocabulary Size:** 32,000 tokens
|
| 21 |
- **Positional Encoding:** RoPE (Rotary Position Embeddings)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
## Usage
|
| 24 |
|
| 25 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
```python
|
| 28 |
-
from transformers import
|
|
|
|
|
|
|
| 29 |
|
| 30 |
model_name = "your-username/mineral-nano-1"
|
| 31 |
-
|
| 32 |
-
model =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 36 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
```
|
| 39 |
|
| 40 |
-
### Chat
|
| 41 |
|
| 42 |
```python
|
| 43 |
messages = [
|
| 44 |
-
{
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
]
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
```
|
| 53 |
|
| 54 |
## Training Details
|
| 55 |
|
| 56 |
- **Framework:** PyTorch with Transformers
|
| 57 |
-
- **Training Data:**
|
| 58 |
- **Training Duration:** [Specify training time]
|
| 59 |
- **Hardware:** [Specify GPUs used]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
## Limitations
|
| 62 |
|
| 63 |
-
- Limited
|
| 64 |
-
-
|
| 65 |
-
-
|
| 66 |
-
-
|
|
|
|
|
|
|
| 67 |
|
| 68 |
## Intended Use
|
| 69 |
|
| 70 |
This model is designed for:
|
| 71 |
-
- Educational purposes
|
| 72 |
-
- Prototyping
|
| 73 |
- Low-resource deployment scenarios
|
| 74 |
-
- Fast inference
|
| 75 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
## License
|
| 78 |
|
|
@@ -81,9 +173,9 @@ This model is designed for:
|
|
| 81 |
## Citation
|
| 82 |
|
| 83 |
```bibtex
|
| 84 |
-
@misc{mineral-nano-1,
|
| 85 |
author = {Your Name},
|
| 86 |
-
title = {Mineral Nano 1: A Compact Language Model},
|
| 87 |
year = {2025},
|
| 88 |
publisher = {HuggingFace},
|
| 89 |
url = {https://huggingface.co/your-username/mineral-nano-1}
|
|
@@ -92,4 +184,8 @@ This model is designed for:
|
|
| 92 |
|
| 93 |
## Contact
|
| 94 |
|
| 95 |
-
For questions or issues, please open an issue on the model repository.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Mineral Nano 1 Vision
|
| 2 |
|
| 3 |
+
Mineral Nano 1 Vision is a compact, efficient vision-language model designed for fast inference and low-resource environments with multimodal capabilities.
|
| 4 |
|
| 5 |
## Model Details
|
| 6 |
|
| 7 |
- **Model Name:** mineral-nano-1
|
| 8 |
+
- **Model Type:** Vision-Language Model (VLM)
|
| 9 |
+
- **Parameters:** ~110M parameters
|
| 10 |
- **Context Length:** 2048 tokens
|
| 11 |
+
- **Architecture:** Transformer-based decoder with vision encoder (12 layers)
|
| 12 |
- **Precision:** BFloat16
|
| 13 |
+
- **Image Resolution:** 224x224
|
| 14 |
+
- **Modalities:** Text + Images
|
| 15 |
|
| 16 |
## Architecture
|
| 17 |
|
| 18 |
+
### Language Model
|
| 19 |
- **Hidden Size:** 768
|
| 20 |
- **Intermediate Size:** 3072
|
| 21 |
- **Attention Heads:** 12
|
|
|
|
| 23 |
- **Vocabulary Size:** 32,000 tokens
|
| 24 |
- **Positional Encoding:** RoPE (Rotary Position Embeddings)
|
| 25 |
|
| 26 |
+
### Vision Encoder
|
| 27 |
+
- **Image Size:** 224x224
|
| 28 |
+
- **Patch Size:** 16x16
|
| 29 |
+
- **Hidden Size:** 768
|
| 30 |
+
- **Layers:** 12
|
| 31 |
+
- **Image Tokens:** 196 per image
|
| 32 |
+
- **Architecture:** ViT-style encoder
|
| 33 |
+
|
| 34 |
## Usage
|
| 35 |
|
| 36 |
+
### Installation
|
| 37 |
+
|
| 38 |
+
```bash
|
| 39 |
+
pip install transformers pillow torch
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
### Basic Image Understanding
|
| 43 |
|
| 44 |
```python
|
| 45 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 46 |
+
from PIL import Image
|
| 47 |
+
import requests
|
| 48 |
|
| 49 |
model_name = "your-username/mineral-nano-1"
|
| 50 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 51 |
+
model = AutoModelForVision2Seq.from_pretrained(model_name)
|
| 52 |
+
|
| 53 |
+
# Load an image
|
| 54 |
+
url = "https://example.com/image.jpg"
|
| 55 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 56 |
+
|
| 57 |
+
# Prepare inputs
|
| 58 |
+
prompt = "<image>What is in this image?"
|
| 59 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
| 60 |
|
| 61 |
+
# Generate response
|
|
|
|
| 62 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 63 |
+
response = processor.decode(outputs[0], skip_special_tokens=True)
|
| 64 |
+
print(response)
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
### Multiple Images
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from PIL import Image
|
| 71 |
+
|
| 72 |
+
images = [
|
| 73 |
+
Image.open("image1.jpg"),
|
| 74 |
+
Image.open("image2.jpg")
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
prompt = "<image>Describe the first image. <image>Now describe the second image."
|
| 78 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt")
|
| 79 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
| 80 |
+
print(processor.decode(outputs[0], skip_special_tokens=True))
|
| 81 |
```
|
| 82 |
|
| 83 |
+
### Chat with Images
|
| 84 |
|
| 85 |
```python
|
| 86 |
messages = [
|
| 87 |
+
{
|
| 88 |
+
"role": "user",
|
| 89 |
+
"content": [
|
| 90 |
+
{"type": "image"},
|
| 91 |
+
{"type": "text", "text": "What objects are in this image?"}
|
| 92 |
+
]
|
| 93 |
+
}
|
| 94 |
]
|
| 95 |
|
| 96 |
+
# Apply chat template
|
| 97 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 98 |
+
inputs = processor(text=text, images=image, return_tensors="pt")
|
| 99 |
+
outputs = model.generate(**inputs, max_new_tokens=150, temperature=0.7)
|
| 100 |
+
print(processor.decode(outputs[0], skip_special_tokens=True))
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
### Local Images
|
| 104 |
+
|
| 105 |
+
```python
|
| 106 |
+
from PIL import Image
|
| 107 |
+
|
| 108 |
+
# Load local image
|
| 109 |
+
image = Image.open("path/to/your/image.jpg")
|
| 110 |
+
|
| 111 |
+
prompt = "<image>Describe what you see in detail."
|
| 112 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
| 113 |
+
outputs = model.generate(**inputs, max_new_tokens=256)
|
| 114 |
+
print(processor.decode(outputs[0], skip_special_tokens=True))
|
| 115 |
```
|
| 116 |
|
| 117 |
## Training Details
|
| 118 |
|
| 119 |
- **Framework:** PyTorch with Transformers
|
| 120 |
+
- **Training Data:** Text + Image pairs
|
| 121 |
- **Training Duration:** [Specify training time]
|
| 122 |
- **Hardware:** [Specify GPUs used]
|
| 123 |
+
- **Vision Encoder:** Pretrained ViT encoder fine-tuned with language model
|
| 124 |
+
|
| 125 |
+
## Capabilities
|
| 126 |
+
|
| 127 |
+
✅ Image description and captioning
|
| 128 |
+
✅ Visual question answering
|
| 129 |
+
✅ Object detection and recognition
|
| 130 |
+
✅ Scene understanding
|
| 131 |
+
✅ Multi-image reasoning
|
| 132 |
+
✅ OCR and text extraction from images
|
| 133 |
|
| 134 |
## Limitations
|
| 135 |
|
| 136 |
+
- Limited to 224x224 resolution images
|
| 137 |
+
- Context window of 2048 tokens including image tokens
|
| 138 |
+
- May struggle with fine-grained details
|
| 139 |
+
- Best for general image understanding tasks
|
| 140 |
+
- Compact size means reduced capabilities compared to larger VLMs
|
| 141 |
+
- Limited multilingual vision capabilities
|
| 142 |
|
| 143 |
## Intended Use
|
| 144 |
|
| 145 |
This model is designed for:
|
| 146 |
+
- Educational purposes and learning VLM architectures
|
| 147 |
+
- Prototyping multimodal applications
|
| 148 |
- Low-resource deployment scenarios
|
| 149 |
+
- Fast inference with vision capabilities
|
| 150 |
+
- Mobile and edge device applications
|
| 151 |
+
- Personal projects requiring image understanding
|
| 152 |
+
|
| 153 |
+
## Image Preprocessing
|
| 154 |
+
|
| 155 |
+
Images are automatically:
|
| 156 |
+
- Resized to 224x224
|
| 157 |
+
- Normalized with CLIP-style statistics
|
| 158 |
+
- Converted to RGB
|
| 159 |
+
- Split into 16x16 patches (196 total patches)
|
| 160 |
+
|
| 161 |
+
## Performance Tips
|
| 162 |
+
|
| 163 |
+
- Use square images when possible for best results
|
| 164 |
+
- Ensure images are clear and well-lit
|
| 165 |
+
- Keep prompts concise and specific
|
| 166 |
+
- Use batch processing for multiple images
|
| 167 |
+
- Enable `use_cache=True` for faster generation
|
| 168 |
|
| 169 |
## License
|
| 170 |
|
|
|
|
| 173 |
## Citation
|
| 174 |
|
| 175 |
```bibtex
|
| 176 |
+
@misc{mineral-nano-1-vision,
|
| 177 |
author = {Your Name},
|
| 178 |
+
title = {Mineral Nano 1 Vision: A Compact Vision-Language Model},
|
| 179 |
year = {2025},
|
| 180 |
publisher = {HuggingFace},
|
| 181 |
url = {https://huggingface.co/your-username/mineral-nano-1}
|
|
|
|
| 184 |
|
| 185 |
## Contact
|
| 186 |
|
| 187 |
+
For questions or issues, please open an issue on the model repository.
|
| 188 |
+
|
| 189 |
+
## Acknowledgments
|
| 190 |
+
|
| 191 |
+
This model builds upon research in vision transformers and multimodal learning.
|