Add custom modeling file
Browse files- caca_transformers.py +2005 -0
caca_transformers.py
ADDED
|
@@ -0,0 +1,2005 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import math
|
| 5 |
+
from typing import Optional, Tuple, List
|
| 6 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 7 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 8 |
+
from transformers.generation.utils import GenerationMixin
|
| 9 |
+
from collections import OrderedDict
|
| 10 |
+
import logging
|
| 11 |
+
from functools import lru_cache
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
try:
|
| 16 |
+
from flash_attn import flash_attn_func
|
| 17 |
+
HAS_FLASH_ATTN = True
|
| 18 |
+
except ImportError:
|
| 19 |
+
HAS_FLASH_ATTN = False
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
from xformers.ops import memory_efficient_attention
|
| 23 |
+
HAS_XFORMERS = True
|
| 24 |
+
except ImportError:
|
| 25 |
+
HAS_XFORMERS = False
|
| 26 |
+
|
| 27 |
+
HAS_SDPA = hasattr(F, 'scaled_dot_product_attention')
|
| 28 |
+
|
| 29 |
+
# --- config ---
|
| 30 |
+
class CacaConfig(PretrainedConfig):
|
| 31 |
+
model_type = "caca"
|
| 32 |
+
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
vocab_size=32000,
|
| 36 |
+
hidden_size=2048,
|
| 37 |
+
intermediate_size=8192,
|
| 38 |
+
num_hidden_layers=24,
|
| 39 |
+
num_attention_heads=32,
|
| 40 |
+
num_key_value_heads=8,
|
| 41 |
+
head_dim=64,
|
| 42 |
+
max_position_embeddings=8192,
|
| 43 |
+
rms_norm_eps=1e-6,
|
| 44 |
+
qk_norm_eps=1e-6,
|
| 45 |
+
initializer_range=0.02,
|
| 46 |
+
use_cache=True,
|
| 47 |
+
pad_token_id=None,
|
| 48 |
+
bos_token_id=1,
|
| 49 |
+
eos_token_id=2,
|
| 50 |
+
tie_word_embeddings=False,
|
| 51 |
+
rope_theta=10000.0,
|
| 52 |
+
rope_scaling=None,
|
| 53 |
+
use_rotary_embeddings=True,
|
| 54 |
+
attention_bias=False,
|
| 55 |
+
attention_dropout=0.0,
|
| 56 |
+
use_qk_norm=True,
|
| 57 |
+
use_alibi=False,
|
| 58 |
+
use_flash_attn=True,
|
| 59 |
+
use_grouped_query_attention=False,
|
| 60 |
+
use_multi_query_attention=False,
|
| 61 |
+
sliding_window=None,
|
| 62 |
+
use_longformer_attention=False,
|
| 63 |
+
longformer_attention_window=512,
|
| 64 |
+
attn_logit_softcapping=None,
|
| 65 |
+
final_logit_softcapping=None,
|
| 66 |
+
attention_sink_size=4,
|
| 67 |
+
attention_sink_window=1024,
|
| 68 |
+
use_attention_sink=False,
|
| 69 |
+
attention_pattern="all_global",
|
| 70 |
+
global_attention_every_n_layers=2,
|
| 71 |
+
mlp_bias=False,
|
| 72 |
+
hidden_dropout=0.1,
|
| 73 |
+
residual_dropout=0.1,
|
| 74 |
+
use_moe=False,
|
| 75 |
+
num_experts=8,
|
| 76 |
+
num_experts_per_tok=2,
|
| 77 |
+
use_expert_choice=False,
|
| 78 |
+
expert_choice_k=0.125,
|
| 79 |
+
router_aux_loss_coef=0.01,
|
| 80 |
+
router_z_loss_coef=0.001,
|
| 81 |
+
moe_layer_frequency=2,
|
| 82 |
+
expert_capacity_factor=1.0,
|
| 83 |
+
use_grouped_moe=False,
|
| 84 |
+
num_expert_groups=1,
|
| 85 |
+
use_layer_scale=False,
|
| 86 |
+
layer_scale_init=1e-5,
|
| 87 |
+
use_stochastic_depth=False,
|
| 88 |
+
stochastic_depth_prob=0.1,
|
| 89 |
+
use_mixture_of_depths=False,
|
| 90 |
+
mod_capacity_factor=0.5,
|
| 91 |
+
mod_route_method="learned",
|
| 92 |
+
use_cross_attention=False,
|
| 93 |
+
cross_attention_frequency=4,
|
| 94 |
+
use_multimodal=False,
|
| 95 |
+
vision_config=None,
|
| 96 |
+
audio_config=None,
|
| 97 |
+
projector_hidden_size=None,
|
| 98 |
+
use_soft_merging=False,
|
| 99 |
+
merge_threshold=0.5,
|
| 100 |
+
pretraining_tp=1,
|
| 101 |
+
tensor_parallel_size=1,
|
| 102 |
+
pipeline_parallel_size=1,
|
| 103 |
+
chat_template=None,
|
| 104 |
+
**kwargs
|
| 105 |
+
):
|
| 106 |
+
self.vocab_size = vocab_size
|
| 107 |
+
self.hidden_size = hidden_size
|
| 108 |
+
self.intermediate_size = intermediate_size
|
| 109 |
+
self.num_hidden_layers = num_hidden_layers
|
| 110 |
+
self.num_attention_heads = num_attention_heads
|
| 111 |
+
self.num_key_value_heads = num_key_value_heads
|
| 112 |
+
self.head_dim = head_dim or (hidden_size // num_attention_heads if hidden_size and num_attention_heads else None)
|
| 113 |
+
self.max_position_embeddings = max_position_embeddings
|
| 114 |
+
self.rms_norm_eps = rms_norm_eps
|
| 115 |
+
self.qk_norm_eps = qk_norm_eps
|
| 116 |
+
self.initializer_range = initializer_range
|
| 117 |
+
self.use_cache = use_cache
|
| 118 |
+
self.pad_token_id = pad_token_id
|
| 119 |
+
self.bos_token_id = bos_token_id
|
| 120 |
+
self.eos_token_id = eos_token_id
|
| 121 |
+
self.tie_word_embeddings = tie_word_embeddings
|
| 122 |
+
self.rope_theta = rope_theta
|
| 123 |
+
self.rope_scaling = rope_scaling
|
| 124 |
+
self.use_rotary_embeddings = use_rotary_embeddings
|
| 125 |
+
self.attention_bias = attention_bias
|
| 126 |
+
self.attention_dropout = attention_dropout
|
| 127 |
+
self.use_qk_norm = use_qk_norm
|
| 128 |
+
self.use_alibi = use_alibi
|
| 129 |
+
self.use_flash_attn = use_flash_attn
|
| 130 |
+
self.use_grouped_query_attention = use_grouped_query_attention
|
| 131 |
+
self.use_multi_query_attention = use_multi_query_attention
|
| 132 |
+
self.sliding_window = sliding_window
|
| 133 |
+
self.use_longformer_attention = use_longformer_attention
|
| 134 |
+
self.longformer_attention_window = longformer_attention_window
|
| 135 |
+
self.attn_logit_softcapping = attn_logit_softcapping
|
| 136 |
+
self.final_logit_softcapping = final_logit_softcapping
|
| 137 |
+
self.attention_sink_size = attention_sink_size
|
| 138 |
+
self.attention_sink_window = attention_sink_window
|
| 139 |
+
self.use_attention_sink = use_attention_sink
|
| 140 |
+
self.attention_pattern = attention_pattern
|
| 141 |
+
self.global_attention_every_n_layers = global_attention_every_n_layers
|
| 142 |
+
self.mlp_bias = mlp_bias
|
| 143 |
+
self.hidden_dropout = hidden_dropout
|
| 144 |
+
self.residual_dropout = residual_dropout
|
| 145 |
+
self.use_moe = use_moe
|
| 146 |
+
self.num_experts = num_experts
|
| 147 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 148 |
+
self.use_expert_choice = use_expert_choice
|
| 149 |
+
self.expert_choice_k = expert_choice_k
|
| 150 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
| 151 |
+
self.router_z_loss_coef = router_z_loss_coef
|
| 152 |
+
self.moe_layer_frequency = moe_layer_frequency
|
| 153 |
+
self.expert_capacity_factor = expert_capacity_factor
|
| 154 |
+
self.use_grouped_moe = use_grouped_moe
|
| 155 |
+
self.num_expert_groups = num_expert_groups
|
| 156 |
+
self.use_layer_scale = use_layer_scale
|
| 157 |
+
self.layer_scale_init = layer_scale_init
|
| 158 |
+
self.use_stochastic_depth = use_stochastic_depth
|
| 159 |
+
self.stochastic_depth_prob = stochastic_depth_prob
|
| 160 |
+
self.use_mixture_of_depths = use_mixture_of_depths
|
| 161 |
+
self.mod_capacity_factor = mod_capacity_factor
|
| 162 |
+
self.mod_route_method = mod_route_method
|
| 163 |
+
self.use_cross_attention = use_cross_attention
|
| 164 |
+
self.cross_attention_frequency = cross_attention_frequency
|
| 165 |
+
self.use_multimodal = use_multimodal
|
| 166 |
+
self.vision_config = vision_config or {}
|
| 167 |
+
self.audio_config = audio_config or {}
|
| 168 |
+
self.projector_hidden_size = projector_hidden_size or hidden_size
|
| 169 |
+
self.use_soft_merging = use_soft_merging
|
| 170 |
+
self.merge_threshold = merge_threshold
|
| 171 |
+
self.pretraining_tp = pretraining_tp
|
| 172 |
+
self.tensor_parallel_size = tensor_parallel_size
|
| 173 |
+
self.pipeline_parallel_size = pipeline_parallel_size
|
| 174 |
+
|
| 175 |
+
if chat_template is None:
|
| 176 |
+
self.chat_template = (
|
| 177 |
+
"{% for message in messages %}"
|
| 178 |
+
"{% if message['role'] == 'system' %}"
|
| 179 |
+
"System: {{ message['content'] }}\n"
|
| 180 |
+
"{% elif message['role'] == 'user' %}"
|
| 181 |
+
"User: {{ message['content'] }}\n"
|
| 182 |
+
"{% elif message['role'] == 'assistant' %}"
|
| 183 |
+
"Assistant: {{ message['content'] }}\n"
|
| 184 |
+
"{% endif %}"
|
| 185 |
+
"{% endfor %}"
|
| 186 |
+
"{% if add_generation_prompt %}Assistant:{% endif %}"
|
| 187 |
+
)
|
| 188 |
+
else:
|
| 189 |
+
self.chat_template = chat_template
|
| 190 |
+
|
| 191 |
+
self._validate_config()
|
| 192 |
+
super().__init__(
|
| 193 |
+
pad_token_id=pad_token_id,
|
| 194 |
+
bos_token_id=bos_token_id,
|
| 195 |
+
eos_token_id=eos_token_id,
|
| 196 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 197 |
+
**kwargs
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
def _validate_config(self):
|
| 201 |
+
if self.num_attention_heads % self.num_key_value_heads != 0:
|
| 202 |
+
raise ValueError(
|
| 203 |
+
f"num_attention_heads ({self.num_attention_heads}) harus habis dibagi "
|
| 204 |
+
f"num_key_value_heads ({self.num_key_value_heads})"
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
if self.use_moe and self.num_experts < self.num_experts_per_tok:
|
| 208 |
+
raise ValueError(
|
| 209 |
+
f"num_experts ({self.num_experts}) harus >= "
|
| 210 |
+
f"num_experts_per_tok ({self.num_experts_per_tok})"
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
| 214 |
+
raise ValueError(
|
| 215 |
+
f"hidden_size ({self.hidden_size}) harus habis dibagi "
|
| 216 |
+
f"num_attention_heads ({self.num_attention_heads})"
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
if self.vocab_size <= 0:
|
| 220 |
+
raise ValueError(f"vocab_size harus > 0, dapat {self.vocab_size}")
|
| 221 |
+
|
| 222 |
+
if self.use_flash_attn and not HAS_FLASH_ATTN:
|
| 223 |
+
logger.warning(
|
| 224 |
+
"use_flash_attn=True tapi flash-attn tidak terinstall. "
|
| 225 |
+
"Akan fallback ke SDPA/standard attention."
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
if self.sliding_window is not None:
|
| 229 |
+
if self.sliding_window > self.max_position_embeddings:
|
| 230 |
+
raise ValueError(
|
| 231 |
+
f"sliding_window ({self.sliding_window}) tidak boleh > "
|
| 232 |
+
f"max_position_embeddings ({self.max_position_embeddings})"
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
if self.use_moe:
|
| 236 |
+
if self.moe_layer_frequency <= 0:
|
| 237 |
+
raise ValueError(f"moe_layer_frequency harus > 0")
|
| 238 |
+
if self.moe_layer_frequency > self.num_hidden_layers:
|
| 239 |
+
logger.warning(
|
| 240 |
+
f"moe_layer_frequency ({self.moe_layer_frequency}) > "
|
| 241 |
+
f"num_hidden_layers ({self.num_hidden_layers}). "
|
| 242 |
+
f"MoE tidak akan digunakan."
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
def to_dict(self):
|
| 246 |
+
has_quant_config = hasattr(self, 'quantization_config')
|
| 247 |
+
quantization_config_backup = getattr(self, 'quantization_config', None)
|
| 248 |
+
|
| 249 |
+
if has_quant_config and quantization_config_backup is None:
|
| 250 |
+
delattr(self, 'quantization_config')
|
| 251 |
+
|
| 252 |
+
try:
|
| 253 |
+
output = super().to_dict()
|
| 254 |
+
output['auto_map'] = {
|
| 255 |
+
"AutoConfig": "caca_transformers.CacaConfig",
|
| 256 |
+
"AutoModel": "caca_transformers.CacaModel",
|
| 257 |
+
"AutoModelForCausalLM": "caca_transformers.CacaForCausalLM"
|
| 258 |
+
}
|
| 259 |
+
finally:
|
| 260 |
+
if has_quant_config:
|
| 261 |
+
self.quantization_config = quantization_config_backup
|
| 262 |
+
|
| 263 |
+
return output
|
| 264 |
+
|
| 265 |
+
# --- Arsitektur Model ---
|
| 266 |
+
class CacaRMSNorm(nn.Module):
|
| 267 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 268 |
+
super().__init__()
|
| 269 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 270 |
+
self.eps = eps
|
| 271 |
+
|
| 272 |
+
def forward(self, x):
|
| 273 |
+
input_dtype = x.dtype
|
| 274 |
+
x = x.float()
|
| 275 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
| 276 |
+
x = x * torch.rsqrt(variance + self.eps)
|
| 277 |
+
return (self.weight * x).to(input_dtype)
|
| 278 |
+
|
| 279 |
+
class LayerScale(nn.Module):
|
| 280 |
+
def __init__(self, dim, init_value=1e-5):
|
| 281 |
+
super().__init__()
|
| 282 |
+
self.gamma = nn.Parameter(init_value * torch.ones(dim))
|
| 283 |
+
|
| 284 |
+
def forward(self, x):
|
| 285 |
+
return self.gamma * x
|
| 286 |
+
|
| 287 |
+
class StochasticDepth(nn.Module):
|
| 288 |
+
def __init__(self, drop_prob=0.0):
|
| 289 |
+
super().__init__()
|
| 290 |
+
self.drop_prob = drop_prob
|
| 291 |
+
|
| 292 |
+
def forward(self, x, training=True):
|
| 293 |
+
if not training or self.drop_prob == 0.0:
|
| 294 |
+
return x
|
| 295 |
+
keep_prob = 1 - self.drop_prob
|
| 296 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
| 297 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 298 |
+
random_tensor.floor_()
|
| 299 |
+
return x.div(keep_prob) * random_tensor
|
| 300 |
+
|
| 301 |
+
class CacaRotaryEmbedding(nn.Module):
|
| 302 |
+
def __init__(
|
| 303 |
+
self,
|
| 304 |
+
dim,
|
| 305 |
+
max_position_embeddings=8192,
|
| 306 |
+
base=10000.0,
|
| 307 |
+
scaling_factor=1.0,
|
| 308 |
+
scaling_type=None,
|
| 309 |
+
):
|
| 310 |
+
super().__init__()
|
| 311 |
+
self.dim = dim
|
| 312 |
+
self.max_position_embeddings = max_position_embeddings
|
| 313 |
+
self.base = base
|
| 314 |
+
self.scaling_factor = scaling_factor
|
| 315 |
+
self.scaling_type = scaling_type
|
| 316 |
+
inv_freq = 1.0 / (
|
| 317 |
+
self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)
|
| 318 |
+
)
|
| 319 |
+
if scaling_type == "linear":
|
| 320 |
+
inv_freq = inv_freq / scaling_factor
|
| 321 |
+
elif scaling_type == "dynamic":
|
| 322 |
+
inv_freq = inv_freq
|
| 323 |
+
elif scaling_type == "yarn":
|
| 324 |
+
inv_freq = self._yarn_get_inv_freq(inv_freq)
|
| 325 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 326 |
+
|
| 327 |
+
def _yarn_get_inv_freq(self, inv_freq):
|
| 328 |
+
if len(inv_freq) == 0:
|
| 329 |
+
return inv_freq
|
| 330 |
+
alpha = self.scaling_factor
|
| 331 |
+
beta_fast = 32
|
| 332 |
+
beta_slow = 1
|
| 333 |
+
freq_threshold = 1 / (self.max_position_embeddings * beta_fast)
|
| 334 |
+
low_freq_mask = inv_freq > freq_threshold
|
| 335 |
+
high_freq_mask = ~low_freq_mask
|
| 336 |
+
low_freq = inv_freq[low_freq_mask]
|
| 337 |
+
high_freq = inv_freq[high_freq_mask]
|
| 338 |
+
if len(low_freq) > 0:
|
| 339 |
+
low_freq = low_freq / alpha
|
| 340 |
+
if len(high_freq) > 0:
|
| 341 |
+
smooth_factor = (
|
| 342 |
+
self.max_position_embeddings * beta_slow / high_freq - beta_fast
|
| 343 |
+
) / (beta_slow - beta_fast)
|
| 344 |
+
smooth_factor = torch.clamp(smooth_factor, 0.0, 1.0)
|
| 345 |
+
high_freq = (1 - smooth_factor) * (
|
| 346 |
+
high_freq / alpha
|
| 347 |
+
) + smooth_factor * high_freq
|
| 348 |
+
result = torch.zeros_like(inv_freq)
|
| 349 |
+
result[low_freq_mask] = low_freq
|
| 350 |
+
result[high_freq_mask] = high_freq
|
| 351 |
+
return result
|
| 352 |
+
|
| 353 |
+
def forward(self, x, seq_len, position_offset=0):
|
| 354 |
+
t = torch.arange(
|
| 355 |
+
position_offset, position_offset + seq_len, device=x.device
|
| 356 |
+
).type_as(self.inv_freq)
|
| 357 |
+
if self.scaling_type == "dynamic":
|
| 358 |
+
if seq_len > self.max_position_embeddings:
|
| 359 |
+
dynamic_scale = seq_len / self.max_position_embeddings
|
| 360 |
+
t = t / dynamic_scale
|
| 361 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 362 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 363 |
+
cos = emb.cos()[None, None, :, :]
|
| 364 |
+
sin = emb.sin()[None, None, :, :]
|
| 365 |
+
return cos.to(x.dtype), sin.to(x.dtype)
|
| 366 |
+
|
| 367 |
+
class ALiBiPositionalBias(nn.Module):
|
| 368 |
+
def __init__(self, num_heads, max_positions=8192):
|
| 369 |
+
super().__init__()
|
| 370 |
+
self.num_heads = num_heads
|
| 371 |
+
self.max_positions = max_positions
|
| 372 |
+
slopes = torch.tensor(self._get_slopes(num_heads))
|
| 373 |
+
self.register_buffer("slopes", slopes, persistent=False)
|
| 374 |
+
|
| 375 |
+
def _get_slopes(self, n):
|
| 376 |
+
def get_slopes_power_of_2(n):
|
| 377 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
| 378 |
+
ratio = start
|
| 379 |
+
return [start * (ratio**i) for i in range(n)]
|
| 380 |
+
|
| 381 |
+
if math.log2(n).is_integer():
|
| 382 |
+
return get_slopes_power_of_2(n)
|
| 383 |
+
else:
|
| 384 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
| 385 |
+
return (
|
| 386 |
+
get_slopes_power_of_2(closest_power_of_2)
|
| 387 |
+
+ self._get_slopes(2 * closest_power_of_2)[0::2][
|
| 388 |
+
: n - closest_power_of_2
|
| 389 |
+
]
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
def forward(self, seq_len, key_len=None):
|
| 393 |
+
if key_len is None:
|
| 394 |
+
key_len = seq_len
|
| 395 |
+
query_pos = torch.arange(seq_len, device=self.slopes.device).unsqueeze(1)
|
| 396 |
+
key_pos = torch.arange(key_len, device=self.slopes.device).unsqueeze(0)
|
| 397 |
+
relative_pos = key_pos - query_pos
|
| 398 |
+
bias = relative_pos.unsqueeze(0) * self.slopes.unsqueeze(1).unsqueeze(2)
|
| 399 |
+
return bias.unsqueeze(0)
|
| 400 |
+
|
| 401 |
+
def rotate_half(x):
|
| 402 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 403 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 404 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 405 |
+
|
| 406 |
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
| 407 |
+
cos = cos.to(q.dtype)
|
| 408 |
+
sin = sin.to(q.dtype)
|
| 409 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 410 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 411 |
+
return q_embed, k_embed
|
| 412 |
+
|
| 413 |
+
def soft_cap_logits(x, cap):
|
| 414 |
+
if cap is None or cap <= 0:
|
| 415 |
+
return x
|
| 416 |
+
return x.clamp(-cap * 0.99, cap * 0.99)
|
| 417 |
+
|
| 418 |
+
class TopKRouter(nn.Module):
|
| 419 |
+
def __init__(self, hidden_size, num_experts, num_experts_per_tok):
|
| 420 |
+
super().__init__()
|
| 421 |
+
self.num_experts = num_experts
|
| 422 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 423 |
+
self.gate = nn.Linear(hidden_size, num_experts, bias=False)
|
| 424 |
+
self.gate_norm = nn.LayerNorm(hidden_size)
|
| 425 |
+
|
| 426 |
+
def forward(self, hidden_states):
|
| 427 |
+
batch_size, seq_len, hidden_size = hidden_states.shape
|
| 428 |
+
hidden_states = hidden_states.view(-1, hidden_size)
|
| 429 |
+
hidden_states = self.gate_norm(hidden_states)
|
| 430 |
+
router_logits = self.gate(hidden_states)
|
| 431 |
+
router_logits = torch.clamp(router_logits, min=-10, max=10)
|
| 432 |
+
routing_weights = F.softmax(router_logits, dim=-1)
|
| 433 |
+
top_k_weights, top_k_indices = torch.topk(
|
| 434 |
+
routing_weights, self.num_experts_per_tok, dim=-1
|
| 435 |
+
)
|
| 436 |
+
top_k_weights = top_k_weights / (top_k_weights.sum(dim=-1, keepdim=True) + 1e-8)
|
| 437 |
+
router_probs = F.softmax(router_logits, dim=-1, dtype=torch.float32)
|
| 438 |
+
expert_usage = router_probs.mean(dim=0)
|
| 439 |
+
mean_usage = expert_usage.mean()
|
| 440 |
+
aux_loss = ((expert_usage - mean_usage) ** 2).sum() / (mean_usage + 1e-10)
|
| 441 |
+
router_logits_for_z = router_logits.to(torch.float32)
|
| 442 |
+
z_loss = torch.logsumexp(router_logits_for_z, dim=-1).mean()
|
| 443 |
+
return top_k_weights, top_k_indices, aux_loss, z_loss
|
| 444 |
+
|
| 445 |
+
class ExpertChoiceRouter(nn.Module):
|
| 446 |
+
def __init__(self, hidden_size, num_experts, expert_choice_k):
|
| 447 |
+
super().__init__()
|
| 448 |
+
self.num_experts = num_experts
|
| 449 |
+
self.expert_choice_k = expert_choice_k
|
| 450 |
+
self.gate = nn.Linear(hidden_size, num_experts, bias=False)
|
| 451 |
+
|
| 452 |
+
def forward(self, hidden_states):
|
| 453 |
+
batch_size, seq_len, hidden_size = hidden_states.shape
|
| 454 |
+
total_tokens = batch_size * seq_len
|
| 455 |
+
hidden_states_flat = hidden_states.view(-1, hidden_size)
|
| 456 |
+
router_logits = self.gate(hidden_states_flat)
|
| 457 |
+
router_probs = F.softmax(router_logits, dim=-1, dtype=torch.float32)
|
| 458 |
+
router_probs_t = router_probs.t()
|
| 459 |
+
capacity = max(1, int(self.expert_choice_k * total_tokens / self.num_experts))
|
| 460 |
+
top_k_values, top_k_indices = torch.topk(
|
| 461 |
+
router_probs_t, k=min(capacity, total_tokens), dim=-1
|
| 462 |
+
)
|
| 463 |
+
expert_mask = torch.zeros(
|
| 464 |
+
self.num_experts, total_tokens, device=hidden_states.device
|
| 465 |
+
)
|
| 466 |
+
for expert_idx in range(self.num_experts):
|
| 467 |
+
expert_mask[expert_idx, top_k_indices[expert_idx]] = 1.0
|
| 468 |
+
routing_weights = expert_mask.t() * router_probs
|
| 469 |
+
aux_loss = (router_probs.mean(dim=0) ** 2).sum() * self.num_experts
|
| 470 |
+
z_loss = torch.logsumexp(router_logits, dim=-1).mean()
|
| 471 |
+
return routing_weights, aux_loss, z_loss
|
| 472 |
+
|
| 473 |
+
class Expert(nn.Module):
|
| 474 |
+
def __init__(self, config):
|
| 475 |
+
super().__init__()
|
| 476 |
+
self.gate_proj = nn.Linear(
|
| 477 |
+
config.hidden_size, config.intermediate_size, bias=config.mlp_bias
|
| 478 |
+
)
|
| 479 |
+
self.up_proj = nn.Linear(
|
| 480 |
+
config.hidden_size, config.intermediate_size, bias=config.mlp_bias
|
| 481 |
+
)
|
| 482 |
+
self.down_proj = nn.Linear(
|
| 483 |
+
config.intermediate_size, config.hidden_size, bias=config.mlp_bias
|
| 484 |
+
)
|
| 485 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
| 486 |
+
|
| 487 |
+
def forward(self, x):
|
| 488 |
+
gate = F.silu(self.gate_proj(x))
|
| 489 |
+
up = self.up_proj(x)
|
| 490 |
+
hidden = gate * up
|
| 491 |
+
hidden = self.dropout(hidden)
|
| 492 |
+
return self.down_proj(hidden)
|
| 493 |
+
|
| 494 |
+
class MixtureOfExperts(nn.Module):
|
| 495 |
+
def __init__(self, config):
|
| 496 |
+
super().__init__()
|
| 497 |
+
self.config = config
|
| 498 |
+
self.num_experts = config.num_experts
|
| 499 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 500 |
+
self.use_expert_choice = config.use_expert_choice
|
| 501 |
+
self.experts = nn.ModuleList([Expert(config) for _ in range(self.num_experts)])
|
| 502 |
+
if self.use_expert_choice:
|
| 503 |
+
self.router = ExpertChoiceRouter(
|
| 504 |
+
config.hidden_size, config.num_experts, config.expert_choice_k
|
| 505 |
+
)
|
| 506 |
+
else:
|
| 507 |
+
self.router = TopKRouter(
|
| 508 |
+
config.hidden_size, config.num_experts, config.num_experts_per_tok
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
def forward(self, hidden_states):
|
| 512 |
+
batch_size, seq_len, hidden_size = hidden_states.shape
|
| 513 |
+
hidden_states_flat = hidden_states.view(-1, hidden_size)
|
| 514 |
+
if self.use_expert_choice:
|
| 515 |
+
routing_weights, aux_loss, z_loss = self.router(hidden_states)
|
| 516 |
+
final_output = torch.zeros_like(hidden_states_flat)
|
| 517 |
+
for expert_idx, expert in enumerate(self.experts):
|
| 518 |
+
expert_mask = routing_weights[:, expert_idx] > 0
|
| 519 |
+
if expert_mask.any():
|
| 520 |
+
expert_input = hidden_states_flat[expert_mask]
|
| 521 |
+
expert_output = expert(expert_input)
|
| 522 |
+
final_output[expert_mask] += (
|
| 523 |
+
expert_output
|
| 524 |
+
* routing_weights[expert_mask, expert_idx : expert_idx + 1]
|
| 525 |
+
)
|
| 526 |
+
else:
|
| 527 |
+
top_k_weights, top_k_indices, aux_loss, z_loss = self.router(hidden_states)
|
| 528 |
+
final_output = torch.zeros_like(hidden_states_flat)
|
| 529 |
+
for i in range(self.num_experts_per_tok):
|
| 530 |
+
expert_indices = top_k_indices[:, i]
|
| 531 |
+
expert_weights = top_k_weights[:, i : i + 1]
|
| 532 |
+
for expert_idx in range(self.num_experts):
|
| 533 |
+
expert_mask = expert_indices == expert_idx
|
| 534 |
+
if expert_mask.any():
|
| 535 |
+
expert_input = hidden_states_flat[expert_mask]
|
| 536 |
+
expert_output = self.experts[expert_idx](expert_input)
|
| 537 |
+
final_output[expert_mask] += (
|
| 538 |
+
expert_output * expert_weights[expert_mask]
|
| 539 |
+
)
|
| 540 |
+
final_output = final_output.view(batch_size, seq_len, hidden_size)
|
| 541 |
+
return final_output, aux_loss, z_loss
|
| 542 |
+
|
| 543 |
+
class MixtureOfDepthsRouter(nn.Module):
|
| 544 |
+
def __init__(self, hidden_size, capacity_factor=0.5, route_method="learned"):
|
| 545 |
+
super().__init__()
|
| 546 |
+
self.capacity_factor = capacity_factor
|
| 547 |
+
self.route_method = route_method
|
| 548 |
+
if route_method == "learned":
|
| 549 |
+
self.router = nn.Linear(hidden_size, 1)
|
| 550 |
+
|
| 551 |
+
def forward(self, hidden_states):
|
| 552 |
+
batch_size, seq_len, hidden_size = hidden_states.shape
|
| 553 |
+
if self.route_method == "learned":
|
| 554 |
+
routing_logits = self.router(hidden_states).squeeze(-1)
|
| 555 |
+
elif self.route_method == "random":
|
| 556 |
+
routing_logits = torch.rand(
|
| 557 |
+
batch_size, seq_len, device=hidden_states.device
|
| 558 |
+
)
|
| 559 |
+
else:
|
| 560 |
+
routing_logits = torch.zeros(
|
| 561 |
+
batch_size, seq_len, device=hidden_states.device
|
| 562 |
+
)
|
| 563 |
+
capacity = max(1, int(seq_len * self.capacity_factor))
|
| 564 |
+
_, top_indices = torch.topk(routing_logits, k=capacity, dim=-1)
|
| 565 |
+
process_mask = torch.zeros(
|
| 566 |
+
batch_size, seq_len, dtype=torch.bool, device=hidden_states.device
|
| 567 |
+
)
|
| 568 |
+
process_mask.scatter_(1, top_indices, True)
|
| 569 |
+
return process_mask
|
| 570 |
+
|
| 571 |
+
class CacaAttention(nn.Module):
|
| 572 |
+
def __init__(self, config, layer_idx=None):
|
| 573 |
+
super().__init__()
|
| 574 |
+
self.config = config
|
| 575 |
+
self.layer_idx = layer_idx
|
| 576 |
+
self.hidden_size = config.hidden_size
|
| 577 |
+
self.num_heads = config.num_attention_heads
|
| 578 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 579 |
+
self.head_dim = config.head_dim
|
| 580 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 581 |
+
self.sliding_window = config.sliding_window
|
| 582 |
+
self.attn_logit_softcapping = config.attn_logit_softcapping
|
| 583 |
+
self.attention_sink_size = config.attention_sink_size
|
| 584 |
+
self.attention_sink_window = config.attention_sink_window
|
| 585 |
+
self.q_proj = nn.Linear(
|
| 586 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
|
| 587 |
+
)
|
| 588 |
+
self.k_proj = nn.Linear(
|
| 589 |
+
self.hidden_size,
|
| 590 |
+
self.num_key_value_heads * self.head_dim,
|
| 591 |
+
bias=config.attention_bias,
|
| 592 |
+
)
|
| 593 |
+
self.v_proj = nn.Linear(
|
| 594 |
+
self.hidden_size,
|
| 595 |
+
self.num_key_value_heads * self.head_dim,
|
| 596 |
+
bias=config.attention_bias,
|
| 597 |
+
)
|
| 598 |
+
self.o_proj = nn.Linear(
|
| 599 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias
|
| 600 |
+
)
|
| 601 |
+
if config.use_qk_norm:
|
| 602 |
+
self.q_norm = CacaRMSNorm(self.head_dim, eps=config.qk_norm_eps)
|
| 603 |
+
self.k_norm = CacaRMSNorm(self.head_dim, eps=config.qk_norm_eps)
|
| 604 |
+
else:
|
| 605 |
+
self.q_norm = None
|
| 606 |
+
self.k_norm = None
|
| 607 |
+
if config.use_rotary_embeddings:
|
| 608 |
+
scaling_factor = 1.0
|
| 609 |
+
scaling_type = None
|
| 610 |
+
if config.rope_scaling is not None:
|
| 611 |
+
scaling_type = config.rope_scaling.get("type", "linear")
|
| 612 |
+
scaling_factor = config.rope_scaling.get("factor", 1.0)
|
| 613 |
+
self.rotary_emb = CacaRotaryEmbedding(
|
| 614 |
+
self.head_dim,
|
| 615 |
+
config.max_position_embeddings,
|
| 616 |
+
config.rope_theta,
|
| 617 |
+
scaling_factor=scaling_factor,
|
| 618 |
+
scaling_type=scaling_type,
|
| 619 |
+
)
|
| 620 |
+
else:
|
| 621 |
+
self.rotary_emb = None
|
| 622 |
+
if config.use_alibi:
|
| 623 |
+
self.alibi = ALiBiPositionalBias(
|
| 624 |
+
self.num_heads, config.max_position_embeddings
|
| 625 |
+
)
|
| 626 |
+
else:
|
| 627 |
+
self.alibi = None
|
| 628 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
| 629 |
+
self.is_global_attention = self._determine_attention_type(config, layer_idx)
|
| 630 |
+
self.has_flash_attn = HAS_FLASH_ATTN and config.use_flash_attn
|
| 631 |
+
self.has_xformers = HAS_XFORMERS
|
| 632 |
+
self.has_sdpa = HAS_SDPA
|
| 633 |
+
self._mask_cache = {}
|
| 634 |
+
self._max_cache_size = 10
|
| 635 |
+
|
| 636 |
+
def _determine_attention_type(self, config, layer_idx):
|
| 637 |
+
if layer_idx is None:
|
| 638 |
+
return False
|
| 639 |
+
if config.attention_pattern == "all_global":
|
| 640 |
+
return True
|
| 641 |
+
elif config.attention_pattern == "all_local":
|
| 642 |
+
return False
|
| 643 |
+
elif config.attention_pattern == "interleaved":
|
| 644 |
+
return (layer_idx % config.global_attention_every_n_layers) == (
|
| 645 |
+
config.global_attention_every_n_layers - 1
|
| 646 |
+
)
|
| 647 |
+
return False
|
| 648 |
+
|
| 649 |
+
def forward(
|
| 650 |
+
self, hidden_states, attention_mask=None, past_key_value=None, use_cache=False
|
| 651 |
+
):
|
| 652 |
+
batch_size, seq_length, _ = hidden_states.size()
|
| 653 |
+
query_states = self.q_proj(hidden_states)
|
| 654 |
+
key_states = self.k_proj(hidden_states)
|
| 655 |
+
value_states = self.v_proj(hidden_states)
|
| 656 |
+
query_states = query_states.view(
|
| 657 |
+
batch_size, seq_length, self.num_heads, self.head_dim
|
| 658 |
+
).transpose(1, 2)
|
| 659 |
+
key_states = key_states.view(
|
| 660 |
+
batch_size, seq_length, self.num_key_value_heads, self.head_dim
|
| 661 |
+
).transpose(1, 2)
|
| 662 |
+
value_states = value_states.view(
|
| 663 |
+
batch_size, seq_length, self.num_key_value_heads, self.head_dim
|
| 664 |
+
).transpose(1, 2)
|
| 665 |
+
if self.q_norm is not None and self.k_norm is not None:
|
| 666 |
+
query_states = self.q_norm(query_states)
|
| 667 |
+
key_states = self.k_norm(key_states)
|
| 668 |
+
|
| 669 |
+
position_offset = 0
|
| 670 |
+
if past_key_value is not None:
|
| 671 |
+
try:
|
| 672 |
+
if isinstance(past_key_value, (tuple, list)) and len(past_key_value) >= 2:
|
| 673 |
+
if past_key_value[0] is not None:
|
| 674 |
+
position_offset = past_key_value[0].shape[2]
|
| 675 |
+
except (IndexError, AttributeError, TypeError):
|
| 676 |
+
position_offset = 0
|
| 677 |
+
|
| 678 |
+
if self.rotary_emb is not None:
|
| 679 |
+
cos, sin = self.rotary_emb(query_states, seq_length, position_offset)
|
| 680 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 681 |
+
query_states, key_states, cos, sin
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
if past_key_value is not None and past_key_value[0] is not None:
|
| 685 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 686 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 687 |
+
|
| 688 |
+
if use_cache:
|
| 689 |
+
present_key_value = (key_states, value_states)
|
| 690 |
+
else:
|
| 691 |
+
present_key_value = None
|
| 692 |
+
|
| 693 |
+
key_states = key_states.repeat_interleave(self.num_key_value_groups, dim=1)
|
| 694 |
+
value_states = value_states.repeat_interleave(self.num_key_value_groups, dim=1)
|
| 695 |
+
kv_seq_len = key_states.shape[-2]
|
| 696 |
+
|
| 697 |
+
use_sliding_window = (not self.is_global_attention) and (
|
| 698 |
+
self.sliding_window is not None
|
| 699 |
+
)
|
| 700 |
+
if self.has_flash_attn and attention_mask is None:
|
| 701 |
+
if query_states.device.type == "cuda" and query_states.dtype in [
|
| 702 |
+
torch.float16,
|
| 703 |
+
torch.bfloat16,
|
| 704 |
+
]:
|
| 705 |
+
try:
|
| 706 |
+
attn_output = self._flash_attention(
|
| 707 |
+
query_states, key_states, value_states, use_sliding_window
|
| 708 |
+
)
|
| 709 |
+
except Exception as e:
|
| 710 |
+
logger.warning(f"Flash Attention gagal, pakai fallback: {e}")
|
| 711 |
+
attn_output = self._fallback_attention(
|
| 712 |
+
query_states,
|
| 713 |
+
key_states,
|
| 714 |
+
value_states,
|
| 715 |
+
attention_mask,
|
| 716 |
+
kv_seq_len,
|
| 717 |
+
use_sliding_window,
|
| 718 |
+
)
|
| 719 |
+
else:
|
| 720 |
+
attn_output = self._fallback_attention(
|
| 721 |
+
query_states,
|
| 722 |
+
key_states,
|
| 723 |
+
value_states,
|
| 724 |
+
attention_mask,
|
| 725 |
+
kv_seq_len,
|
| 726 |
+
use_sliding_window,
|
| 727 |
+
)
|
| 728 |
+
else:
|
| 729 |
+
attn_output = self._fallback_attention(
|
| 730 |
+
query_states,
|
| 731 |
+
key_states,
|
| 732 |
+
value_states,
|
| 733 |
+
attention_mask,
|
| 734 |
+
kv_seq_len,
|
| 735 |
+
use_sliding_window,
|
| 736 |
+
)
|
| 737 |
+
attn_output = self.o_proj(attn_output)
|
| 738 |
+
return attn_output, present_key_value
|
| 739 |
+
|
| 740 |
+
def _flash_attention(
|
| 741 |
+
self, query_states, key_states, value_states, use_sliding_window
|
| 742 |
+
):
|
| 743 |
+
batch_size, num_heads, seq_length, head_dim = query_states.shape
|
| 744 |
+
kv_seq_len = key_states.shape[-2]
|
| 745 |
+
original_dtype = query_states.dtype
|
| 746 |
+
if original_dtype == torch.bfloat16:
|
| 747 |
+
if not torch.cuda.is_bf16_supported():
|
| 748 |
+
logger.warning("BF16 not supported on this GPU, falling back to FP16")
|
| 749 |
+
original_dtype = torch.float16
|
| 750 |
+
compute_dtype = (
|
| 751 |
+
torch.bfloat16
|
| 752 |
+
if original_dtype not in [torch.float16, torch.bfloat16]
|
| 753 |
+
else original_dtype
|
| 754 |
+
)
|
| 755 |
+
query_states = query_states.transpose(1, 2).contiguous().to(compute_dtype)
|
| 756 |
+
key_states = key_states.transpose(1, 2).contiguous().to(compute_dtype)
|
| 757 |
+
value_states = value_states.transpose(1, 2).contiguous().to(compute_dtype)
|
| 758 |
+
if use_sliding_window and self.sliding_window < kv_seq_len:
|
| 759 |
+
window_size = (self.sliding_window, 0)
|
| 760 |
+
else:
|
| 761 |
+
window_size = (-1, 0)
|
| 762 |
+
attn_output = flash_attn_func(
|
| 763 |
+
query_states,
|
| 764 |
+
key_states,
|
| 765 |
+
value_states,
|
| 766 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0,
|
| 767 |
+
softmax_scale=None,
|
| 768 |
+
causal=True,
|
| 769 |
+
window_size=window_size,
|
| 770 |
+
)
|
| 771 |
+
attn_output = attn_output.to(original_dtype)
|
| 772 |
+
attn_output = attn_output.reshape(batch_size, seq_length, self.hidden_size)
|
| 773 |
+
return attn_output
|
| 774 |
+
|
| 775 |
+
def _fallback_attention(
|
| 776 |
+
self,
|
| 777 |
+
query_states,
|
| 778 |
+
key_states,
|
| 779 |
+
value_states,
|
| 780 |
+
attention_mask,
|
| 781 |
+
kv_seq_len,
|
| 782 |
+
use_sliding_window,
|
| 783 |
+
):
|
| 784 |
+
device_type = query_states.device.type
|
| 785 |
+
if self.has_xformers and device_type == "cuda" and attention_mask is None:
|
| 786 |
+
try:
|
| 787 |
+
return self._xformers_attention(
|
| 788 |
+
query_states,
|
| 789 |
+
key_states,
|
| 790 |
+
value_states,
|
| 791 |
+
kv_seq_len,
|
| 792 |
+
use_sliding_window,
|
| 793 |
+
)
|
| 794 |
+
except Exception as e:
|
| 795 |
+
logger.warning(f"xFormers gagal, pakai SDPA: {e}")
|
| 796 |
+
if self.has_sdpa:
|
| 797 |
+
return self._sdpa_attention(
|
| 798 |
+
query_states,
|
| 799 |
+
key_states,
|
| 800 |
+
value_states,
|
| 801 |
+
attention_mask,
|
| 802 |
+
kv_seq_len,
|
| 803 |
+
use_sliding_window,
|
| 804 |
+
)
|
| 805 |
+
else:
|
| 806 |
+
return self._standard_attention(
|
| 807 |
+
query_states,
|
| 808 |
+
key_states,
|
| 809 |
+
value_states,
|
| 810 |
+
attention_mask,
|
| 811 |
+
kv_seq_len,
|
| 812 |
+
use_sliding_window,
|
| 813 |
+
)
|
| 814 |
+
|
| 815 |
+
def _create_causal_mask(
|
| 816 |
+
self, query_length, key_length, dtype, device, use_sliding_window
|
| 817 |
+
):
|
| 818 |
+
cache_key = (
|
| 819 |
+
query_length,
|
| 820 |
+
key_length,
|
| 821 |
+
str(dtype),
|
| 822 |
+
use_sliding_window,
|
| 823 |
+
self.sliding_window if use_sliding_window else None,
|
| 824 |
+
)
|
| 825 |
+
if cache_key in self._mask_cache:
|
| 826 |
+
cached_mask = self._mask_cache[cache_key]
|
| 827 |
+
return cached_mask.to(device, dtype)
|
| 828 |
+
if query_length > key_length:
|
| 829 |
+
key_length = query_length
|
| 830 |
+
query_pos = torch.arange(query_length, device=device) + (
|
| 831 |
+
key_length - query_length
|
| 832 |
+
)
|
| 833 |
+
key_pos = torch.arange(key_length, device=device)
|
| 834 |
+
distance = query_pos[:, None] - key_pos[None, :]
|
| 835 |
+
mask = distance < 0
|
| 836 |
+
|
| 837 |
+
if use_sliding_window and self.sliding_window is not None:
|
| 838 |
+
if self.config.use_attention_sink and self.attention_sink_size > 0:
|
| 839 |
+
is_sink = key_pos[None, :] < self.attention_sink_size
|
| 840 |
+
in_window = (distance >= 0) & (distance <= self.sliding_window)
|
| 841 |
+
mask = (distance < 0) | ((~is_sink) & (~in_window))
|
| 842 |
+
|
| 843 |
+
else:
|
| 844 |
+
too_far_mask = distance > self.sliding_window
|
| 845 |
+
mask = mask | too_far_mask
|
| 846 |
+
float_mask = torch.zeros(
|
| 847 |
+
1, 1, query_length, key_length, dtype=dtype, device=device
|
| 848 |
+
)
|
| 849 |
+
float_mask.masked_fill_(mask.unsqueeze(0).unsqueeze(0), -1e9)
|
| 850 |
+
if len(self._mask_cache) >= self._max_cache_size:
|
| 851 |
+
oldest_key = next(iter(self._mask_cache))
|
| 852 |
+
del self._mask_cache[oldest_key]
|
| 853 |
+
self._mask_cache[cache_key] = float_mask.detach().cpu()
|
| 854 |
+
return float_mask
|
| 855 |
+
|
| 856 |
+
def _xformers_attention(
|
| 857 |
+
self, query_states, key_states, value_states, kv_seq_len, use_sliding_window
|
| 858 |
+
):
|
| 859 |
+
batch_size, num_heads, seq_length, head_dim = query_states.shape
|
| 860 |
+
attn_bias = self._create_causal_mask(
|
| 861 |
+
seq_length,
|
| 862 |
+
kv_seq_len,
|
| 863 |
+
query_states.dtype,
|
| 864 |
+
query_states.device,
|
| 865 |
+
use_sliding_window,
|
| 866 |
+
)
|
| 867 |
+
query_states = query_states.transpose(1, 2)
|
| 868 |
+
key_states = key_states.transpose(1, 2)
|
| 869 |
+
value_states = value_states.transpose(1, 2)
|
| 870 |
+
attn_output = memory_efficient_attention(
|
| 871 |
+
query_states,
|
| 872 |
+
key_states,
|
| 873 |
+
value_states,
|
| 874 |
+
attn_bias=attn_bias,
|
| 875 |
+
p=self.config.attention_dropout if self.training else 0.0,
|
| 876 |
+
)
|
| 877 |
+
attn_output = attn_output.reshape(batch_size, seq_length, self.hidden_size)
|
| 878 |
+
return attn_output
|
| 879 |
+
|
| 880 |
+
def _sdpa_attention(
|
| 881 |
+
self,
|
| 882 |
+
query_states,
|
| 883 |
+
key_states,
|
| 884 |
+
value_states,
|
| 885 |
+
attention_mask,
|
| 886 |
+
kv_seq_len,
|
| 887 |
+
use_sliding_window,
|
| 888 |
+
):
|
| 889 |
+
batch_size, num_heads, seq_length, head_dim = query_states.shape
|
| 890 |
+
if attention_mask is None:
|
| 891 |
+
attention_mask = self._create_causal_mask(
|
| 892 |
+
seq_length,
|
| 893 |
+
kv_seq_len,
|
| 894 |
+
query_states.dtype,
|
| 895 |
+
query_states.device,
|
| 896 |
+
use_sliding_window,
|
| 897 |
+
)
|
| 898 |
+
if self.alibi is not None:
|
| 899 |
+
alibi_bias = self.alibi(seq_length, kv_seq_len)
|
| 900 |
+
attention_mask = attention_mask + alibi_bias
|
| 901 |
+
attn_output = F.scaled_dot_product_attention(
|
| 902 |
+
query_states,
|
| 903 |
+
key_states,
|
| 904 |
+
value_states,
|
| 905 |
+
attn_mask=attention_mask,
|
| 906 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0,
|
| 907 |
+
is_causal=False,
|
| 908 |
+
)
|
| 909 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 910 |
+
attn_output = attn_output.reshape(batch_size, seq_length, self.hidden_size)
|
| 911 |
+
return attn_output
|
| 912 |
+
|
| 913 |
+
def _standard_attention(
|
| 914 |
+
self,
|
| 915 |
+
query_states,
|
| 916 |
+
key_states,
|
| 917 |
+
value_states,
|
| 918 |
+
attention_mask,
|
| 919 |
+
kv_seq_len,
|
| 920 |
+
use_sliding_window,
|
| 921 |
+
):
|
| 922 |
+
batch_size, num_heads, seq_length, head_dim = query_states.shape
|
| 923 |
+
attn_weights = torch.matmul(
|
| 924 |
+
query_states, key_states.transpose(2, 3)
|
| 925 |
+
) / math.sqrt(head_dim)
|
| 926 |
+
attn_weights = torch.clamp(attn_weights, min=-50.0, max=50.0)
|
| 927 |
+
attn_weights = soft_cap_logits(attn_weights, self.attn_logit_softcapping)
|
| 928 |
+
if attention_mask is None:
|
| 929 |
+
attention_mask = self._create_causal_mask(
|
| 930 |
+
seq_length,
|
| 931 |
+
kv_seq_len,
|
| 932 |
+
attn_weights.dtype,
|
| 933 |
+
attn_weights.device,
|
| 934 |
+
use_sliding_window,
|
| 935 |
+
)
|
| 936 |
+
if self.alibi is not None:
|
| 937 |
+
alibi_bias = self.alibi(seq_length, kv_seq_len)
|
| 938 |
+
attention_mask = attention_mask + alibi_bias
|
| 939 |
+
attn_weights = attn_weights + attention_mask
|
| 940 |
+
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
|
| 941 |
+
query_states.dtype
|
| 942 |
+
)
|
| 943 |
+
attn_weights = self.attention_dropout(attn_weights)
|
| 944 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 945 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 946 |
+
attn_output = attn_output.reshape(batch_size, seq_length, self.hidden_size)
|
| 947 |
+
return attn_output
|
| 948 |
+
|
| 949 |
+
class CacaCrossAttention(nn.Module):
|
| 950 |
+
def __init__(self, config):
|
| 951 |
+
super().__init__()
|
| 952 |
+
self.config = config
|
| 953 |
+
self.hidden_size = config.hidden_size
|
| 954 |
+
self.num_heads = config.num_attention_heads
|
| 955 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 956 |
+
self.head_dim = config.head_dim
|
| 957 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 958 |
+
self.q_proj = nn.Linear(
|
| 959 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
|
| 960 |
+
)
|
| 961 |
+
self.k_proj = nn.Linear(
|
| 962 |
+
self.hidden_size,
|
| 963 |
+
self.num_key_value_heads * self.head_dim,
|
| 964 |
+
bias=config.attention_bias,
|
| 965 |
+
)
|
| 966 |
+
self.v_proj = nn.Linear(
|
| 967 |
+
self.hidden_size,
|
| 968 |
+
self.num_key_value_heads * self.head_dim,
|
| 969 |
+
bias=config.attention_bias,
|
| 970 |
+
)
|
| 971 |
+
self.o_proj = nn.Linear(
|
| 972 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias
|
| 973 |
+
)
|
| 974 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
| 975 |
+
|
| 976 |
+
def forward(self, hidden_states, encoder_hidden_states, attention_mask=None):
|
| 977 |
+
batch_size, seq_length, _ = hidden_states.size()
|
| 978 |
+
encoder_seq_length = encoder_hidden_states.size(1)
|
| 979 |
+
query_states = self.q_proj(hidden_states)
|
| 980 |
+
key_states = self.k_proj(encoder_hidden_states)
|
| 981 |
+
value_states = self.v_proj(encoder_hidden_states)
|
| 982 |
+
query_states = query_states.view(
|
| 983 |
+
batch_size, seq_length, self.num_heads, self.head_dim
|
| 984 |
+
).transpose(1, 2)
|
| 985 |
+
key_states = key_states.view(
|
| 986 |
+
batch_size, encoder_seq_length, self.num_key_value_heads, self.head_dim
|
| 987 |
+
).transpose(1, 2)
|
| 988 |
+
value_states = value_states.view(
|
| 989 |
+
batch_size, encoder_seq_length, self.num_key_value_heads, self.head_dim
|
| 990 |
+
).transpose(1, 2)
|
| 991 |
+
key_states = key_states.repeat_interleave(self.num_key_value_groups, dim=1)
|
| 992 |
+
value_states = value_states.repeat_interleave(self.num_key_value_groups, dim=1)
|
| 993 |
+
attn_weights = torch.matmul(
|
| 994 |
+
query_states, key_states.transpose(2, 3)
|
| 995 |
+
) / math.sqrt(self.head_dim)
|
| 996 |
+
if attention_mask is not None:
|
| 997 |
+
attn_weights = attn_weights + attention_mask
|
| 998 |
+
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
|
| 999 |
+
query_states.dtype
|
| 1000 |
+
)
|
| 1001 |
+
attn_weights = self.attention_dropout(attn_weights)
|
| 1002 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 1003 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 1004 |
+
attn_output = attn_output.reshape(batch_size, seq_length, self.hidden_size)
|
| 1005 |
+
attn_output = self.o_proj(attn_output)
|
| 1006 |
+
return attn_output
|
| 1007 |
+
|
| 1008 |
+
class CacaMLP(nn.Module):
|
| 1009 |
+
def __init__(self, config):
|
| 1010 |
+
super().__init__()
|
| 1011 |
+
self.hidden_size = config.hidden_size
|
| 1012 |
+
self.intermediate_size = config.intermediate_size
|
| 1013 |
+
self.gate_proj = nn.Linear(
|
| 1014 |
+
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
|
| 1015 |
+
)
|
| 1016 |
+
self.up_proj = nn.Linear(
|
| 1017 |
+
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
|
| 1018 |
+
)
|
| 1019 |
+
self.down_proj = nn.Linear(
|
| 1020 |
+
self.intermediate_size, self.hidden_size, bias=config.mlp_bias
|
| 1021 |
+
)
|
| 1022 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
| 1023 |
+
|
| 1024 |
+
def forward(self, x):
|
| 1025 |
+
gate = F.silu(self.gate_proj(x))
|
| 1026 |
+
up = self.up_proj(x)
|
| 1027 |
+
hidden = gate * up
|
| 1028 |
+
hidden = self.dropout(hidden)
|
| 1029 |
+
output = self.down_proj(hidden)
|
| 1030 |
+
return output
|
| 1031 |
+
|
| 1032 |
+
class CacaDecoderLayer(nn.Module):
|
| 1033 |
+
def __init__(self, config, layer_idx):
|
| 1034 |
+
super().__init__()
|
| 1035 |
+
self.config = config
|
| 1036 |
+
self.layer_idx = layer_idx
|
| 1037 |
+
self.self_attn = CacaAttention(config, layer_idx=layer_idx)
|
| 1038 |
+
self.use_moe = config.use_moe and (layer_idx % config.moe_layer_frequency == 0)
|
| 1039 |
+
if self.use_moe:
|
| 1040 |
+
self.mlp = MixtureOfExperts(config)
|
| 1041 |
+
else:
|
| 1042 |
+
self.mlp = CacaMLP(config)
|
| 1043 |
+
self.use_cross_attention = config.use_cross_attention and (
|
| 1044 |
+
layer_idx % config.cross_attention_frequency == 0
|
| 1045 |
+
)
|
| 1046 |
+
if self.use_cross_attention:
|
| 1047 |
+
self.cross_attn = CacaCrossAttention(config)
|
| 1048 |
+
self.cross_attn_layernorm = CacaRMSNorm(
|
| 1049 |
+
config.hidden_size, config.rms_norm_eps
|
| 1050 |
+
)
|
| 1051 |
+
self.input_layernorm = CacaRMSNorm(config.hidden_size, config.rms_norm_eps)
|
| 1052 |
+
self.post_attention_layernorm = CacaRMSNorm(
|
| 1053 |
+
config.hidden_size, config.rms_norm_eps
|
| 1054 |
+
)
|
| 1055 |
+
self.residual_dropout = nn.Dropout(config.residual_dropout)
|
| 1056 |
+
if config.use_layer_scale:
|
| 1057 |
+
self.layer_scale_1 = LayerScale(config.hidden_size, config.layer_scale_init)
|
| 1058 |
+
self.layer_scale_2 = LayerScale(config.hidden_size, config.layer_scale_init)
|
| 1059 |
+
if self.use_cross_attention:
|
| 1060 |
+
self.layer_scale_cross = LayerScale(
|
| 1061 |
+
config.hidden_size, config.layer_scale_init
|
| 1062 |
+
)
|
| 1063 |
+
else:
|
| 1064 |
+
self.layer_scale_1 = None
|
| 1065 |
+
self.layer_scale_2 = None
|
| 1066 |
+
self.layer_scale_cross = None
|
| 1067 |
+
if config.use_stochastic_depth:
|
| 1068 |
+
drop_prob = (
|
| 1069 |
+
config.stochastic_depth_prob * layer_idx / config.num_hidden_layers
|
| 1070 |
+
)
|
| 1071 |
+
self.stochastic_depth = StochasticDepth(drop_prob)
|
| 1072 |
+
else:
|
| 1073 |
+
self.stochastic_depth = None
|
| 1074 |
+
if config.use_mixture_of_depths:
|
| 1075 |
+
self.mod_router = MixtureOfDepthsRouter(
|
| 1076 |
+
config.hidden_size, config.mod_capacity_factor, config.mod_route_method
|
| 1077 |
+
)
|
| 1078 |
+
else:
|
| 1079 |
+
self.mod_router = None
|
| 1080 |
+
|
| 1081 |
+
def forward(
|
| 1082 |
+
self,
|
| 1083 |
+
hidden_states,
|
| 1084 |
+
attention_mask=None,
|
| 1085 |
+
encoder_hidden_states=None,
|
| 1086 |
+
encoder_attention_mask=None,
|
| 1087 |
+
past_key_value=None,
|
| 1088 |
+
use_cache=False,
|
| 1089 |
+
):
|
| 1090 |
+
aux_loss = 0.0
|
| 1091 |
+
z_loss = 0.0
|
| 1092 |
+
if self.mod_router is not None:
|
| 1093 |
+
process_mask = self.mod_router(hidden_states)
|
| 1094 |
+
tokens_to_process = hidden_states[process_mask]
|
| 1095 |
+
if tokens_to_process.numel() == 0:
|
| 1096 |
+
present_key_value = past_key_value if use_cache else None
|
| 1097 |
+
return hidden_states, present_key_value, aux_loss, z_loss
|
| 1098 |
+
else:
|
| 1099 |
+
process_mask = None
|
| 1100 |
+
tokens_to_process = hidden_states
|
| 1101 |
+
residual = tokens_to_process
|
| 1102 |
+
tokens_to_process = self.input_layernorm(tokens_to_process)
|
| 1103 |
+
attn_output, present_key_value = self.self_attn(
|
| 1104 |
+
tokens_to_process,
|
| 1105 |
+
attention_mask,
|
| 1106 |
+
past_key_value=past_key_value,
|
| 1107 |
+
use_cache=use_cache,
|
| 1108 |
+
)
|
| 1109 |
+
if self.layer_scale_1 is not None:
|
| 1110 |
+
attn_output = self.layer_scale_1(attn_output)
|
| 1111 |
+
if self.stochastic_depth is not None:
|
| 1112 |
+
attn_output = self.stochastic_depth(attn_output, self.training)
|
| 1113 |
+
tokens_to_process = residual + self.residual_dropout(attn_output)
|
| 1114 |
+
if self.use_cross_attention and encoder_hidden_states is not None:
|
| 1115 |
+
residual = tokens_to_process
|
| 1116 |
+
tokens_to_process = self.cross_attn_layernorm(tokens_to_process)
|
| 1117 |
+
cross_attn_output = self.cross_attn(
|
| 1118 |
+
tokens_to_process,
|
| 1119 |
+
encoder_hidden_states,
|
| 1120 |
+
attention_mask=encoder_attention_mask,
|
| 1121 |
+
)
|
| 1122 |
+
if self.layer_scale_cross is not None:
|
| 1123 |
+
cross_attn_output = self.layer_scale_cross(cross_attn_output)
|
| 1124 |
+
if self.stochastic_depth is not None:
|
| 1125 |
+
cross_attn_output = self.stochastic_depth(
|
| 1126 |
+
cross_attn_output, self.training
|
| 1127 |
+
)
|
| 1128 |
+
tokens_to_process = residual + self.residual_dropout(cross_attn_output)
|
| 1129 |
+
residual = tokens_to_process
|
| 1130 |
+
tokens_to_process = self.post_attention_layernorm(tokens_to_process)
|
| 1131 |
+
if self.use_moe:
|
| 1132 |
+
mlp_output, moe_aux_loss, moe_z_loss = self.mlp(tokens_to_process)
|
| 1133 |
+
aux_loss += moe_aux_loss
|
| 1134 |
+
z_loss += moe_z_loss
|
| 1135 |
+
else:
|
| 1136 |
+
mlp_output = self.mlp(tokens_to_process)
|
| 1137 |
+
if self.layer_scale_2 is not None:
|
| 1138 |
+
mlp_output = self.layer_scale_2(mlp_output)
|
| 1139 |
+
if self.stochastic_depth is not None:
|
| 1140 |
+
mlp_output = self.stochastic_depth(mlp_output, self.training)
|
| 1141 |
+
tokens_to_process = residual + self.residual_dropout(mlp_output)
|
| 1142 |
+
if process_mask is not None:
|
| 1143 |
+
hidden_states[process_mask] = tokens_to_process
|
| 1144 |
+
else:
|
| 1145 |
+
hidden_states = tokens_to_process
|
| 1146 |
+
return hidden_states, present_key_value, aux_loss, z_loss
|
| 1147 |
+
|
| 1148 |
+
class VisionEncoder(nn.Module):
|
| 1149 |
+
def __init__(self, config):
|
| 1150 |
+
super().__init__()
|
| 1151 |
+
vision_config = config.vision_config
|
| 1152 |
+
self.patch_size = vision_config.get("patch_size", 14)
|
| 1153 |
+
self.image_size = vision_config.get("image_size", 224)
|
| 1154 |
+
self.num_channels = vision_config.get("num_channels", 3)
|
| 1155 |
+
self.hidden_size = vision_config.get("hidden_size", 1024)
|
| 1156 |
+
self.num_layers = vision_config.get("num_layers", 24)
|
| 1157 |
+
self.num_heads = vision_config.get("num_heads", 16)
|
| 1158 |
+
self.intermediate_size = vision_config.get("intermediate_size", 4096)
|
| 1159 |
+
self.layer_norm_eps = vision_config.get("layer_norm_eps", 1e-6)
|
| 1160 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 1161 |
+
self.patch_embed = nn.Sequential(
|
| 1162 |
+
nn.Conv2d(
|
| 1163 |
+
self.num_channels,
|
| 1164 |
+
self.hidden_size,
|
| 1165 |
+
kernel_size=self.patch_size,
|
| 1166 |
+
stride=self.patch_size,
|
| 1167 |
+
bias=False,
|
| 1168 |
+
),
|
| 1169 |
+
nn.Dropout(p=vision_config.get("dropout", 0.0)),
|
| 1170 |
+
)
|
| 1171 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.hidden_size))
|
| 1172 |
+
self.pos_embed = nn.Parameter(
|
| 1173 |
+
torch.zeros(1, self.num_patches + 1, self.hidden_size)
|
| 1174 |
+
)
|
| 1175 |
+
self.pos_drop = nn.Dropout(p=vision_config.get("dropout", 0.0))
|
| 1176 |
+
self.blocks = nn.ModuleList(
|
| 1177 |
+
[
|
| 1178 |
+
VisionTransformerBlock(
|
| 1179 |
+
dim=self.hidden_size,
|
| 1180 |
+
num_heads=self.num_heads,
|
| 1181 |
+
mlp_ratio=self.intermediate_size / self.hidden_size,
|
| 1182 |
+
dropout=vision_config.get("dropout", 0.0),
|
| 1183 |
+
layer_norm_eps=self.layer_norm_eps,
|
| 1184 |
+
)
|
| 1185 |
+
for _ in range(self.num_layers)
|
| 1186 |
+
]
|
| 1187 |
+
)
|
| 1188 |
+
self.norm = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
| 1189 |
+
self._init_weights()
|
| 1190 |
+
|
| 1191 |
+
def _init_weights(self):
|
| 1192 |
+
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
| 1193 |
+
nn.init.trunc_normal_(self.cls_token, std=0.02)
|
| 1194 |
+
nn.init.trunc_normal_(self.patch_embed[0].weight, std=0.02)
|
| 1195 |
+
|
| 1196 |
+
def forward(self, pixel_values):
|
| 1197 |
+
batch_size = pixel_values.shape[0]
|
| 1198 |
+
x = self.patch_embed(pixel_values)
|
| 1199 |
+
x = x.flatten(2).transpose(1, 2)
|
| 1200 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
| 1201 |
+
x = torch.cat([cls_tokens, x], dim=1)
|
| 1202 |
+
x = x + self.pos_embed
|
| 1203 |
+
x = self.pos_drop(x)
|
| 1204 |
+
for block in self.blocks:
|
| 1205 |
+
x = block(x)
|
| 1206 |
+
x = self.norm(x)
|
| 1207 |
+
return x
|
| 1208 |
+
|
| 1209 |
+
class VisionTransformerBlock(nn.Module):
|
| 1210 |
+
def __init__(self, dim, num_heads, mlp_ratio=4.0, dropout=0.0, layer_norm_eps=1e-6):
|
| 1211 |
+
super().__init__()
|
| 1212 |
+
self.norm1 = nn.LayerNorm(dim, eps=layer_norm_eps)
|
| 1213 |
+
self.attn = nn.MultiheadAttention(
|
| 1214 |
+
dim, num_heads, dropout=dropout, batch_first=True
|
| 1215 |
+
)
|
| 1216 |
+
self.drop_path1 = nn.Dropout(dropout)
|
| 1217 |
+
self.norm2 = nn.LayerNorm(dim, eps=layer_norm_eps)
|
| 1218 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 1219 |
+
self.mlp = nn.Sequential(
|
| 1220 |
+
nn.Linear(dim, mlp_hidden_dim),
|
| 1221 |
+
nn.GELU(),
|
| 1222 |
+
nn.Dropout(dropout),
|
| 1223 |
+
nn.Linear(mlp_hidden_dim, dim),
|
| 1224 |
+
nn.Dropout(dropout),
|
| 1225 |
+
)
|
| 1226 |
+
self.drop_path2 = nn.Dropout(dropout)
|
| 1227 |
+
|
| 1228 |
+
def forward(self, x):
|
| 1229 |
+
residual = x
|
| 1230 |
+
x = self.norm1(x)
|
| 1231 |
+
x = self.attn(x, x, x, need_weights=False)[0]
|
| 1232 |
+
x = self.drop_path1(x)
|
| 1233 |
+
x = residual + x
|
| 1234 |
+
residual = x
|
| 1235 |
+
x = self.norm2(x)
|
| 1236 |
+
x = self.mlp(x)
|
| 1237 |
+
x = self.drop_path2(x)
|
| 1238 |
+
x = residual + x
|
| 1239 |
+
return x
|
| 1240 |
+
|
| 1241 |
+
class AudioEncoder(nn.Module):
|
| 1242 |
+
def __init__(self, config):
|
| 1243 |
+
super().__init__()
|
| 1244 |
+
audio_config = config.audio_config
|
| 1245 |
+
self.num_mel_bins = audio_config.get("num_mel_bins", 80)
|
| 1246 |
+
self.hidden_size = audio_config.get("hidden_size", 1024)
|
| 1247 |
+
self.num_layers = audio_config.get("num_layers", 12)
|
| 1248 |
+
self.num_heads = audio_config.get("num_heads", 16)
|
| 1249 |
+
self.intermediate_size = audio_config.get("intermediate_size", 4096)
|
| 1250 |
+
self.max_audio_length = audio_config.get("max_audio_length", 3000)
|
| 1251 |
+
self.dropout = audio_config.get("dropout", 0.0)
|
| 1252 |
+
self.conv1 = nn.Sequential(
|
| 1253 |
+
nn.Conv1d(self.num_mel_bins, self.hidden_size, kernel_size=3, padding=1),
|
| 1254 |
+
nn.GELU(),
|
| 1255 |
+
nn.Dropout(p=self.dropout),
|
| 1256 |
+
)
|
| 1257 |
+
self.conv2 = nn.Sequential(
|
| 1258 |
+
nn.Conv1d(
|
| 1259 |
+
self.hidden_size, self.hidden_size, kernel_size=3, stride=2, padding=1
|
| 1260 |
+
),
|
| 1261 |
+
nn.GELU(),
|
| 1262 |
+
nn.Dropout(p=self.dropout),
|
| 1263 |
+
)
|
| 1264 |
+
self.pos_embed = nn.Parameter(
|
| 1265 |
+
torch.zeros(1, self.max_audio_length // 2, self.hidden_size)
|
| 1266 |
+
)
|
| 1267 |
+
self.pos_drop = nn.Dropout(p=self.dropout)
|
| 1268 |
+
self.blocks = nn.ModuleList(
|
| 1269 |
+
[
|
| 1270 |
+
AudioTransformerBlock(
|
| 1271 |
+
dim=self.hidden_size,
|
| 1272 |
+
num_heads=self.num_heads,
|
| 1273 |
+
mlp_ratio=self.intermediate_size / self.hidden_size,
|
| 1274 |
+
dropout=self.dropout,
|
| 1275 |
+
)
|
| 1276 |
+
for _ in range(self.num_layers)
|
| 1277 |
+
]
|
| 1278 |
+
)
|
| 1279 |
+
self.norm = nn.LayerNorm(self.hidden_size)
|
| 1280 |
+
self._init_weights()
|
| 1281 |
+
|
| 1282 |
+
def _init_weights(self):
|
| 1283 |
+
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
| 1284 |
+
|
| 1285 |
+
def forward(self, audio_features):
|
| 1286 |
+
x = F.gelu(self.conv1(audio_features))
|
| 1287 |
+
x = F.gelu(self.conv2(x))
|
| 1288 |
+
x = x.transpose(1, 2)
|
| 1289 |
+
seq_len = x.shape[1]
|
| 1290 |
+
if seq_len <= self.pos_embed.shape[1]:
|
| 1291 |
+
x = x + self.pos_embed[:, :seq_len, :]
|
| 1292 |
+
else:
|
| 1293 |
+
pos_embed_interp = F.interpolate(
|
| 1294 |
+
self.pos_embed.transpose(1, 2),
|
| 1295 |
+
size=seq_len,
|
| 1296 |
+
mode="linear",
|
| 1297 |
+
align_corners=False,
|
| 1298 |
+
).transpose(1, 2)
|
| 1299 |
+
x = x + pos_embed_interp
|
| 1300 |
+
x = self.pos_drop(x)
|
| 1301 |
+
for block in self.blocks:
|
| 1302 |
+
x = block(x)
|
| 1303 |
+
x = self.norm(x)
|
| 1304 |
+
return x
|
| 1305 |
+
|
| 1306 |
+
class AudioTransformerBlock(nn.Module):
|
| 1307 |
+
def __init__(self, dim, num_heads, mlp_ratio=4.0, dropout=0.0):
|
| 1308 |
+
super().__init__()
|
| 1309 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 1310 |
+
self.attn = nn.MultiheadAttention(
|
| 1311 |
+
dim, num_heads, dropout=dropout, batch_first=True
|
| 1312 |
+
)
|
| 1313 |
+
self.drop_path1 = nn.Dropout(dropout)
|
| 1314 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 1315 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 1316 |
+
self.mlp = nn.Sequential(
|
| 1317 |
+
nn.Linear(dim, mlp_hidden_dim),
|
| 1318 |
+
nn.GELU(),
|
| 1319 |
+
nn.Dropout(dropout),
|
| 1320 |
+
nn.Linear(mlp_hidden_dim, dim),
|
| 1321 |
+
nn.Dropout(dropout),
|
| 1322 |
+
)
|
| 1323 |
+
self.drop_path2 = nn.Dropout(dropout)
|
| 1324 |
+
|
| 1325 |
+
def forward(self, x):
|
| 1326 |
+
residual = x
|
| 1327 |
+
x = self.norm1(x)
|
| 1328 |
+
x = self.attn(x, x, x, need_weights=False)[0]
|
| 1329 |
+
x = self.drop_path1(x)
|
| 1330 |
+
x = residual + x
|
| 1331 |
+
residual = x
|
| 1332 |
+
x = self.norm2(x)
|
| 1333 |
+
x = self.mlp(x)
|
| 1334 |
+
x = self.drop_path2(x)
|
| 1335 |
+
x = residual + x
|
| 1336 |
+
return x
|
| 1337 |
+
|
| 1338 |
+
class MultiModalProjector(nn.Module):
|
| 1339 |
+
def __init__(self, input_size, output_size, projector_type="mlp", num_layers=2):
|
| 1340 |
+
super().__init__()
|
| 1341 |
+
self.projector_type = projector_type
|
| 1342 |
+
if projector_type == "linear":
|
| 1343 |
+
self.projector = nn.Linear(input_size, output_size)
|
| 1344 |
+
elif projector_type == "mlp":
|
| 1345 |
+
layers = []
|
| 1346 |
+
current_size = input_size
|
| 1347 |
+
for i in range(num_layers - 1):
|
| 1348 |
+
layers.extend(
|
| 1349 |
+
[nn.Linear(current_size, output_size), nn.GELU(), nn.Dropout(0.1)]
|
| 1350 |
+
)
|
| 1351 |
+
current_size = output_size
|
| 1352 |
+
layers.append(nn.Linear(current_size, output_size))
|
| 1353 |
+
self.projector = nn.Sequential(*layers)
|
| 1354 |
+
elif projector_type == "perceiver":
|
| 1355 |
+
self.projector = PerceiverResampler(
|
| 1356 |
+
input_size, output_size, num_latents=64, num_layers=2
|
| 1357 |
+
)
|
| 1358 |
+
elif projector_type == "qformer":
|
| 1359 |
+
self.projector = QFormerProjector(
|
| 1360 |
+
input_size, output_size, num_queries=32, num_layers=2
|
| 1361 |
+
)
|
| 1362 |
+
else:
|
| 1363 |
+
raise ValueError(f"projector_type tidak dikenal: {projector_type}")
|
| 1364 |
+
|
| 1365 |
+
def forward(self, x):
|
| 1366 |
+
return self.projector(x)
|
| 1367 |
+
|
| 1368 |
+
class PerceiverResampler(nn.Module):
|
| 1369 |
+
def __init__(self, input_size, output_size, num_latents=64, num_layers=2):
|
| 1370 |
+
super().__init__()
|
| 1371 |
+
self.num_latents = num_latents
|
| 1372 |
+
self.latents = nn.Parameter(torch.randn(num_latents, output_size))
|
| 1373 |
+
self.layers = nn.ModuleList(
|
| 1374 |
+
[
|
| 1375 |
+
PerceiverLayer(output_size, input_size if i == 0 else output_size)
|
| 1376 |
+
for i in range(num_layers)
|
| 1377 |
+
]
|
| 1378 |
+
)
|
| 1379 |
+
self.norm = nn.LayerNorm(output_size)
|
| 1380 |
+
|
| 1381 |
+
def forward(self, x):
|
| 1382 |
+
batch_size = x.shape[0]
|
| 1383 |
+
latents = self.latents.unsqueeze(0).expand(batch_size, -1, -1)
|
| 1384 |
+
for i, layer in enumerate(self.layers):
|
| 1385 |
+
if i == 0:
|
| 1386 |
+
latents = layer(latents, x)
|
| 1387 |
+
else:
|
| 1388 |
+
latents = layer(latents, latents)
|
| 1389 |
+
return self.norm(latents)
|
| 1390 |
+
|
| 1391 |
+
class PerceiverLayer(nn.Module):
|
| 1392 |
+
def __init__(self, query_dim, key_dim):
|
| 1393 |
+
super().__init__()
|
| 1394 |
+
self.cross_attn = nn.MultiheadAttention(
|
| 1395 |
+
query_dim, num_heads=8, kdim=key_dim, vdim=key_dim, batch_first=True
|
| 1396 |
+
)
|
| 1397 |
+
self.mlp = nn.Sequential(
|
| 1398 |
+
nn.LayerNorm(query_dim),
|
| 1399 |
+
nn.Linear(query_dim, query_dim * 4),
|
| 1400 |
+
nn.GELU(),
|
| 1401 |
+
nn.Linear(query_dim * 4, query_dim),
|
| 1402 |
+
)
|
| 1403 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
| 1404 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
| 1405 |
+
|
| 1406 |
+
def forward(self, query, key):
|
| 1407 |
+
query = (
|
| 1408 |
+
query + self.cross_attn(self.norm1(query), key, key, need_weights=False)[0]
|
| 1409 |
+
)
|
| 1410 |
+
query = query + self.mlp(self.norm2(query))
|
| 1411 |
+
return query
|
| 1412 |
+
|
| 1413 |
+
class QFormerProjector(nn.Module):
|
| 1414 |
+
def __init__(self, input_size, output_size, num_queries=32, num_layers=2):
|
| 1415 |
+
super().__init__()
|
| 1416 |
+
self.num_queries = num_queries
|
| 1417 |
+
self.query_embeds = nn.Parameter(torch.randn(num_queries, output_size))
|
| 1418 |
+
self.query_layers = nn.ModuleList(
|
| 1419 |
+
[
|
| 1420 |
+
nn.TransformerEncoderLayer(
|
| 1421 |
+
d_model=output_size,
|
| 1422 |
+
nhead=8,
|
| 1423 |
+
dim_feedforward=output_size * 4,
|
| 1424 |
+
batch_first=True,
|
| 1425 |
+
)
|
| 1426 |
+
for _ in range(num_layers)
|
| 1427 |
+
]
|
| 1428 |
+
)
|
| 1429 |
+
self.cross_attn_layers = nn.ModuleList(
|
| 1430 |
+
[
|
| 1431 |
+
nn.MultiheadAttention(
|
| 1432 |
+
output_size,
|
| 1433 |
+
num_heads=8,
|
| 1434 |
+
kdim=input_size,
|
| 1435 |
+
vdim=input_size,
|
| 1436 |
+
batch_first=True,
|
| 1437 |
+
)
|
| 1438 |
+
for _ in range(num_layers)
|
| 1439 |
+
]
|
| 1440 |
+
)
|
| 1441 |
+
self.norm = nn.LayerNorm(output_size)
|
| 1442 |
+
|
| 1443 |
+
def forward(self, x):
|
| 1444 |
+
batch_size = x.shape[0]
|
| 1445 |
+
queries = self.query_embeds.unsqueeze(0).expand(batch_size, -1, -1)
|
| 1446 |
+
for query_layer, cross_attn_layer in zip(
|
| 1447 |
+
self.query_layers, self.cross_attn_layers
|
| 1448 |
+
):
|
| 1449 |
+
queries = query_layer(queries)
|
| 1450 |
+
queries = queries + cross_attn_layer(queries, x, x, need_weights=False)[0]
|
| 1451 |
+
return self.norm(queries)
|
| 1452 |
+
|
| 1453 |
+
class CacaPreTrainedModel(PreTrainedModel):
|
| 1454 |
+
config_class = CacaConfig
|
| 1455 |
+
base_model_prefix = "model"
|
| 1456 |
+
supports_gradient_checkpointing = True
|
| 1457 |
+
_no_split_modules = ["CacaDecoderLayer"]
|
| 1458 |
+
_skip_keys_device_placement = "past_key_values"
|
| 1459 |
+
|
| 1460 |
+
def _init_weights(self, module):
|
| 1461 |
+
std = self.config.initializer_range
|
| 1462 |
+
if isinstance(module, nn.Linear):
|
| 1463 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1464 |
+
if module.bias is not None:
|
| 1465 |
+
module.bias.data.zero_()
|
| 1466 |
+
elif isinstance(module, nn.Embedding):
|
| 1467 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1468 |
+
if module.padding_idx is not None:
|
| 1469 |
+
module.weight.data[module.padding_idx].zero_()
|
| 1470 |
+
|
| 1471 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 1472 |
+
if isinstance(module, CacaModel):
|
| 1473 |
+
module.gradient_checkpointing = value
|
| 1474 |
+
|
| 1475 |
+
class CacaModel(CacaPreTrainedModel):
|
| 1476 |
+
def __init__(self, config):
|
| 1477 |
+
super().__init__(config)
|
| 1478 |
+
self.config = config
|
| 1479 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 1480 |
+
self.layers = nn.ModuleList(
|
| 1481 |
+
[
|
| 1482 |
+
CacaDecoderLayer(config, layer_idx=idx)
|
| 1483 |
+
for idx in range(config.num_hidden_layers)
|
| 1484 |
+
]
|
| 1485 |
+
)
|
| 1486 |
+
self.norm = CacaRMSNorm(config.hidden_size, config.rms_norm_eps)
|
| 1487 |
+
self.gradient_checkpointing = False
|
| 1488 |
+
if config.use_multimodal:
|
| 1489 |
+
if config.vision_config:
|
| 1490 |
+
self.vision_encoder = VisionEncoder(config)
|
| 1491 |
+
vision_hidden_size = config.vision_config.get("hidden_size", 768)
|
| 1492 |
+
self.vision_projector = MultiModalProjector(
|
| 1493 |
+
vision_hidden_size,
|
| 1494 |
+
config.hidden_size,
|
| 1495 |
+
projector_type=config.vision_config.get("projector_type", "mlp"),
|
| 1496 |
+
)
|
| 1497 |
+
else:
|
| 1498 |
+
self.vision_encoder = None
|
| 1499 |
+
self.vision_projector = None
|
| 1500 |
+
if config.audio_config:
|
| 1501 |
+
self.audio_encoder = AudioEncoder(config)
|
| 1502 |
+
audio_hidden_size = config.audio_config.get("hidden_size", 768)
|
| 1503 |
+
self.audio_projector = MultiModalProjector(
|
| 1504 |
+
audio_hidden_size,
|
| 1505 |
+
config.hidden_size,
|
| 1506 |
+
projector_type=config.audio_config.get("projector_type", "mlp"),
|
| 1507 |
+
)
|
| 1508 |
+
else:
|
| 1509 |
+
self.audio_encoder = None
|
| 1510 |
+
self.audio_projector = None
|
| 1511 |
+
self.post_init()
|
| 1512 |
+
|
| 1513 |
+
def get_input_embeddings(self):
|
| 1514 |
+
return self.embed_tokens
|
| 1515 |
+
|
| 1516 |
+
def set_input_embeddings(self, value):
|
| 1517 |
+
self.embed_tokens = value
|
| 1518 |
+
|
| 1519 |
+
def _prepare_attention_mask(self, attention_mask, input_shape, dtype):
|
| 1520 |
+
if attention_mask is None:
|
| 1521 |
+
return None
|
| 1522 |
+
batch_size, seq_length = input_shape
|
| 1523 |
+
if attention_mask.dim() == 2:
|
| 1524 |
+
attention_mask = attention_mask[:, None, None, :]
|
| 1525 |
+
elif attention_mask.dim() == 3:
|
| 1526 |
+
attention_mask = attention_mask[:, None, :, :]
|
| 1527 |
+
attention_mask = attention_mask.to(dtype=dtype)
|
| 1528 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(dtype).min
|
| 1529 |
+
return attention_mask
|
| 1530 |
+
|
| 1531 |
+
def forward(
|
| 1532 |
+
self,
|
| 1533 |
+
input_ids=None,
|
| 1534 |
+
pixel_values=None,
|
| 1535 |
+
audio_features=None,
|
| 1536 |
+
attention_mask=None,
|
| 1537 |
+
past_key_values=None,
|
| 1538 |
+
use_cache=None,
|
| 1539 |
+
output_hidden_states=False,
|
| 1540 |
+
return_dict=True,
|
| 1541 |
+
**kwargs,
|
| 1542 |
+
):
|
| 1543 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1544 |
+
if input_ids is not None:
|
| 1545 |
+
batch_size, seq_length = input_ids.shape
|
| 1546 |
+
device = input_ids.device
|
| 1547 |
+
hidden_states = self.embed_tokens(input_ids)
|
| 1548 |
+
else:
|
| 1549 |
+
raise ValueError("input_ids tidak boleh None")
|
| 1550 |
+
|
| 1551 |
+
if pixel_values is not None:
|
| 1552 |
+
pixel_values = pixel_values.to(device)
|
| 1553 |
+
if audio_features is not None:
|
| 1554 |
+
audio_features = audio_features.to(device)
|
| 1555 |
+
|
| 1556 |
+
encoder_hidden_states = None
|
| 1557 |
+
encoder_attention_mask = None
|
| 1558 |
+
if self.config.use_multimodal:
|
| 1559 |
+
multimodal_embeds = []
|
| 1560 |
+
if pixel_values is not None and self.vision_encoder is not None:
|
| 1561 |
+
vision_features = self.vision_encoder(pixel_values.to(hidden_states.device))
|
| 1562 |
+
vision_embeds = self.vision_projector(vision_features)
|
| 1563 |
+
multimodal_embeds.append(vision_embeds)
|
| 1564 |
+
if audio_features is not None and self.audio_encoder is not None:
|
| 1565 |
+
audio_encoded = self.audio_encoder(audio_features.to(hidden_states.device))
|
| 1566 |
+
audio_embeds = self.audio_projector(audio_encoded)
|
| 1567 |
+
multimodal_embeds.append(audio_embeds)
|
| 1568 |
+
if multimodal_embeds and self.config.use_cross_attention:
|
| 1569 |
+
encoder_hidden_states = torch.cat(multimodal_embeds, dim=1)
|
| 1570 |
+
encoder_seq_len = encoder_hidden_states.shape[1]
|
| 1571 |
+
encoder_attention_mask = torch.ones(
|
| 1572 |
+
batch_size,
|
| 1573 |
+
encoder_seq_len,
|
| 1574 |
+
dtype=hidden_states.dtype,
|
| 1575 |
+
device=hidden_states.device,
|
| 1576 |
+
)
|
| 1577 |
+
|
| 1578 |
+
elif multimodal_embeds:
|
| 1579 |
+
multimodal_concat = torch.cat(multimodal_embeds, dim=1)
|
| 1580 |
+
max_multimodal_tokens = self.config.max_position_embeddings // 4
|
| 1581 |
+
if multimodal_concat.shape[1] > max_multimodal_tokens:
|
| 1582 |
+
logger.warning(
|
| 1583 |
+
f"Multimodal tokens ({multimodal_concat.shape[1]}) > max ({max_multimodal_tokens}). "
|
| 1584 |
+
f"Truncating..."
|
| 1585 |
+
)
|
| 1586 |
+
multimodal_concat = multimodal_concat[:, :max_multimodal_tokens]
|
| 1587 |
+
hidden_states = torch.cat([multimodal_concat, hidden_states], dim=1)
|
| 1588 |
+
seq_length = hidden_states.shape[1]
|
| 1589 |
+
if attention_mask is not None:
|
| 1590 |
+
multimodal_mask = torch.ones(
|
| 1591 |
+
batch_size,
|
| 1592 |
+
multimodal_concat.shape[1],
|
| 1593 |
+
dtype=attention_mask.dtype,
|
| 1594 |
+
device=attention_mask.device,
|
| 1595 |
+
)
|
| 1596 |
+
attention_mask = torch.cat([multimodal_mask, attention_mask], dim=1)
|
| 1597 |
+
else:
|
| 1598 |
+
attention_mask = torch.ones(
|
| 1599 |
+
batch_size,
|
| 1600 |
+
seq_length,
|
| 1601 |
+
dtype=hidden_states.dtype,
|
| 1602 |
+
device=device,
|
| 1603 |
+
)
|
| 1604 |
+
if attention_mask is not None:
|
| 1605 |
+
attention_mask = self._prepare_attention_mask(
|
| 1606 |
+
attention_mask, (batch_size, seq_length), hidden_states.dtype
|
| 1607 |
+
)
|
| 1608 |
+
if encoder_attention_mask is not None and self.config.use_cross_attention:
|
| 1609 |
+
encoder_attention_mask = self._prepare_attention_mask(
|
| 1610 |
+
encoder_attention_mask,
|
| 1611 |
+
(batch_size, encoder_hidden_states.shape[1]),
|
| 1612 |
+
hidden_states.dtype,
|
| 1613 |
+
)
|
| 1614 |
+
|
| 1615 |
+
if use_cache:
|
| 1616 |
+
if past_key_values is None:
|
| 1617 |
+
past_key_values = tuple([None] * len(self.layers))
|
| 1618 |
+
|
| 1619 |
+
present_key_values = [] if use_cache else None
|
| 1620 |
+
all_hidden_states = [] if output_hidden_states else None
|
| 1621 |
+
total_aux_loss = 0.0
|
| 1622 |
+
total_z_loss = 0.0
|
| 1623 |
+
for idx, layer in enumerate(self.layers):
|
| 1624 |
+
if output_hidden_states:
|
| 1625 |
+
all_hidden_states.append(hidden_states)
|
| 1626 |
+
past_key_value = (
|
| 1627 |
+
past_key_values[idx] if past_key_values is not None else None
|
| 1628 |
+
)
|
| 1629 |
+
if self.gradient_checkpointing and self.training and not use_cache:
|
| 1630 |
+
hidden_states, aux_loss, z_loss = self._gradient_checkpointing_forward(
|
| 1631 |
+
layer,
|
| 1632 |
+
hidden_states,
|
| 1633 |
+
attention_mask,
|
| 1634 |
+
encoder_hidden_states,
|
| 1635 |
+
encoder_attention_mask,
|
| 1636 |
+
)
|
| 1637 |
+
present_key_value = None
|
| 1638 |
+
else:
|
| 1639 |
+
hidden_states, present_key_value, aux_loss, z_loss = layer(
|
| 1640 |
+
hidden_states,
|
| 1641 |
+
attention_mask,
|
| 1642 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1643 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1644 |
+
past_key_value=past_key_value,
|
| 1645 |
+
use_cache=use_cache,
|
| 1646 |
+
)
|
| 1647 |
+
if use_cache:
|
| 1648 |
+
present_key_values.append(present_key_value)
|
| 1649 |
+
total_aux_loss += aux_loss
|
| 1650 |
+
total_z_loss += z_loss
|
| 1651 |
+
|
| 1652 |
+
if self.training and torch.cuda.is_available():
|
| 1653 |
+
allocated_gb = torch.cuda.memory_allocated() / 1024**3
|
| 1654 |
+
reserved_gb = torch.cuda.memory_reserved() / 1024**3
|
| 1655 |
+
if allocated_gb > 10:
|
| 1656 |
+
logger.warning(
|
| 1657 |
+
f"High GPU memory usage - Allocated: {allocated_gb:.2f}GB, "
|
| 1658 |
+
f"Reserved: {reserved_gb:.2f}GB"
|
| 1659 |
+
)
|
| 1660 |
+
hidden_states = self.norm(hidden_states)
|
| 1661 |
+
if output_hidden_states:
|
| 1662 |
+
all_hidden_states.append(hidden_states)
|
| 1663 |
+
if not return_dict:
|
| 1664 |
+
return tuple(
|
| 1665 |
+
v
|
| 1666 |
+
for v in [
|
| 1667 |
+
hidden_states,
|
| 1668 |
+
present_key_values,
|
| 1669 |
+
all_hidden_states,
|
| 1670 |
+
total_aux_loss,
|
| 1671 |
+
total_z_loss,
|
| 1672 |
+
]
|
| 1673 |
+
if v is not None
|
| 1674 |
+
)
|
| 1675 |
+
return (
|
| 1676 |
+
BaseModelOutputWithPast(
|
| 1677 |
+
last_hidden_state=hidden_states,
|
| 1678 |
+
past_key_values=tuple(present_key_values) if use_cache else None,
|
| 1679 |
+
hidden_states=all_hidden_states,
|
| 1680 |
+
attentions=None,
|
| 1681 |
+
),
|
| 1682 |
+
total_aux_loss,
|
| 1683 |
+
total_z_loss,
|
| 1684 |
+
)
|
| 1685 |
+
|
| 1686 |
+
def _gradient_checkpointing_forward(
|
| 1687 |
+
self,
|
| 1688 |
+
layer,
|
| 1689 |
+
hidden_states,
|
| 1690 |
+
attention_mask,
|
| 1691 |
+
encoder_hidden_states,
|
| 1692 |
+
encoder_attention_mask,
|
| 1693 |
+
):
|
| 1694 |
+
from torch.utils.checkpoint import checkpoint
|
| 1695 |
+
|
| 1696 |
+
def custom_forward(hidden_states, attention_mask, encoder_hidden_states,
|
| 1697 |
+
encoder_attention_mask):
|
| 1698 |
+
output, _, aux_loss, z_loss = layer(
|
| 1699 |
+
hidden_states, attention_mask,
|
| 1700 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1701 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1702 |
+
past_key_value=None,
|
| 1703 |
+
use_cache=False,
|
| 1704 |
+
)
|
| 1705 |
+
|
| 1706 |
+
return output, aux_loss, z_loss
|
| 1707 |
+
|
| 1708 |
+
hidden_states, aux_loss, z_loss = checkpoint(
|
| 1709 |
+
custom_forward,
|
| 1710 |
+
hidden_states, attention_mask,
|
| 1711 |
+
encoder_hidden_states, encoder_attention_mask,
|
| 1712 |
+
use_reentrant=False,
|
| 1713 |
+
)
|
| 1714 |
+
return hidden_states, aux_loss, z_loss
|
| 1715 |
+
|
| 1716 |
+
class CacaForCausalLM(CacaPreTrainedModel, GenerationMixin):
|
| 1717 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1718 |
+
|
| 1719 |
+
def __init__(self, config):
|
| 1720 |
+
super().__init__(config)
|
| 1721 |
+
self.model = CacaModel(config)
|
| 1722 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1723 |
+
self.post_init()
|
| 1724 |
+
|
| 1725 |
+
def get_input_embeddings(self):
|
| 1726 |
+
return self.model.embed_tokens
|
| 1727 |
+
|
| 1728 |
+
def set_input_embeddings(self, value):
|
| 1729 |
+
self.model.embed_tokens = value
|
| 1730 |
+
|
| 1731 |
+
def get_output_embeddings(self):
|
| 1732 |
+
return self.lm_head
|
| 1733 |
+
|
| 1734 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1735 |
+
self.lm_head = new_embeddings
|
| 1736 |
+
|
| 1737 |
+
def set_decoder(self, decoder):
|
| 1738 |
+
self.model = decoder
|
| 1739 |
+
|
| 1740 |
+
def get_decoder(self):
|
| 1741 |
+
return self.model
|
| 1742 |
+
|
| 1743 |
+
def forward(
|
| 1744 |
+
self,
|
| 1745 |
+
input_ids=None,
|
| 1746 |
+
pixel_values=None,
|
| 1747 |
+
audio_features=None,
|
| 1748 |
+
attention_mask=None,
|
| 1749 |
+
labels=None,
|
| 1750 |
+
past_key_values=None,
|
| 1751 |
+
inputs_embeds=None,
|
| 1752 |
+
use_cache=None,
|
| 1753 |
+
output_attentions=None,
|
| 1754 |
+
output_hidden_states=None,
|
| 1755 |
+
return_dict=None,
|
| 1756 |
+
**kwargs,
|
| 1757 |
+
):
|
| 1758 |
+
if input_ids is not None:
|
| 1759 |
+
if input_ids.dtype.is_floating_point:
|
| 1760 |
+
raise TypeError(
|
| 1761 |
+
f"input_ids harus integer dtype, dapat {input_ids.dtype}. "
|
| 1762 |
+
f"Gunakan input_ids.long() untuk convert."
|
| 1763 |
+
)
|
| 1764 |
+
if (input_ids < 0).any():
|
| 1765 |
+
neg_vals = input_ids[input_ids < 0].unique().tolist()
|
| 1766 |
+
raise ValueError(f"input_ids mengandung nilai negatif: {neg_vals}")
|
| 1767 |
+
max_val = input_ids.max().item()
|
| 1768 |
+
if max_val >= self.config.vocab_size:
|
| 1769 |
+
raise ValueError(
|
| 1770 |
+
f"input_ids mengandung nilai >= vocab_size. "
|
| 1771 |
+
f"Max value: {max_val}, vocab_size: {self.config.vocab_size:,}"
|
| 1772 |
+
)
|
| 1773 |
+
|
| 1774 |
+
if labels is not None:
|
| 1775 |
+
if not labels.dtype in [torch.long, torch.int, torch.int32, torch.int64]:
|
| 1776 |
+
raise TypeError(f"labels harus integer dtype, dapat {labels.dtype}")
|
| 1777 |
+
if (labels[labels != -100] < 0).any():
|
| 1778 |
+
raise ValueError(f"labels mengandung nilai negatif (selain -100)")
|
| 1779 |
+
max_label = labels[labels != -100].max().item() if (labels != -100).any() else 0
|
| 1780 |
+
if max_label >= self.config.vocab_size:
|
| 1781 |
+
raise ValueError(
|
| 1782 |
+
f"labels mengandung nilai >= vocab_size. "
|
| 1783 |
+
f"Max: {max_label}, vocab_size: {self.config.vocab_size}"
|
| 1784 |
+
)
|
| 1785 |
+
if attention_mask is not None:
|
| 1786 |
+
if attention_mask.shape[0] != input_ids.shape[0]:
|
| 1787 |
+
raise ValueError(
|
| 1788 |
+
f"attention_mask batch size ({attention_mask.shape[0]}) != "
|
| 1789 |
+
f"input_ids batch size ({input_ids.shape[0]})"
|
| 1790 |
+
)
|
| 1791 |
+
if attention_mask.shape[1] != input_ids.shape[1]:
|
| 1792 |
+
raise ValueError(
|
| 1793 |
+
f"attention_mask seq length ({attention_mask.shape[1]}) != "
|
| 1794 |
+
f"input_ids seq length ({input_ids.shape[1]})"
|
| 1795 |
+
)
|
| 1796 |
+
|
| 1797 |
+
return_dict = (
|
| 1798 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1799 |
+
)
|
| 1800 |
+
outputs, aux_loss, z_loss = self.model(
|
| 1801 |
+
input_ids,
|
| 1802 |
+
pixel_values=pixel_values,
|
| 1803 |
+
audio_features=audio_features,
|
| 1804 |
+
attention_mask=attention_mask,
|
| 1805 |
+
past_key_values=past_key_values,
|
| 1806 |
+
use_cache=use_cache,
|
| 1807 |
+
output_hidden_states=output_hidden_states,
|
| 1808 |
+
return_dict=return_dict,
|
| 1809 |
+
)
|
| 1810 |
+
if return_dict:
|
| 1811 |
+
hidden_states = outputs.last_hidden_state
|
| 1812 |
+
else:
|
| 1813 |
+
hidden_states = outputs[0]
|
| 1814 |
+
logits = self.lm_head(hidden_states)
|
| 1815 |
+
if self.config.final_logit_softcapping:
|
| 1816 |
+
logits = soft_cap_logits(logits, self.config.final_logit_softcapping)
|
| 1817 |
+
loss = None
|
| 1818 |
+
if labels is not None:
|
| 1819 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1820 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1821 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1822 |
+
lm_loss = loss_fct(
|
| 1823 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
| 1824 |
+
)
|
| 1825 |
+
if self.config.use_moe:
|
| 1826 |
+
total_loss = (
|
| 1827 |
+
lm_loss
|
| 1828 |
+
+ (self.config.router_aux_loss_coef * aux_loss)
|
| 1829 |
+
+ (self.config.router_z_loss_coef * z_loss)
|
| 1830 |
+
)
|
| 1831 |
+
else:
|
| 1832 |
+
total_loss = lm_loss
|
| 1833 |
+
loss = total_loss
|
| 1834 |
+
if not return_dict:
|
| 1835 |
+
output = (logits,)
|
| 1836 |
+
if return_dict:
|
| 1837 |
+
output += tuple(
|
| 1838 |
+
v
|
| 1839 |
+
for v in [outputs.past_key_values, outputs.hidden_states]
|
| 1840 |
+
if v is not None
|
| 1841 |
+
)
|
| 1842 |
+
return ((loss,) + output) if loss is not None else output
|
| 1843 |
+
return CausalLMOutputWithPast(
|
| 1844 |
+
loss=loss,
|
| 1845 |
+
logits=logits,
|
| 1846 |
+
past_key_values=outputs.past_key_values if return_dict else None,
|
| 1847 |
+
hidden_states=outputs.hidden_states if return_dict else None,
|
| 1848 |
+
attentions=None,
|
| 1849 |
+
)
|
| 1850 |
+
|
| 1851 |
+
def prepare_inputs_for_generation(
|
| 1852 |
+
self,
|
| 1853 |
+
input_ids,
|
| 1854 |
+
past_key_values=None,
|
| 1855 |
+
attention_mask=None,
|
| 1856 |
+
inputs_embeds=None,
|
| 1857 |
+
pixel_values=None,
|
| 1858 |
+
audio_features=None,
|
| 1859 |
+
**kwargs,
|
| 1860 |
+
):
|
| 1861 |
+
|
| 1862 |
+
has_past = (
|
| 1863 |
+
past_key_values is not None
|
| 1864 |
+
and len(past_key_values) > 0
|
| 1865 |
+
and past_key_values[0] is not None
|
| 1866 |
+
)
|
| 1867 |
+
|
| 1868 |
+
if has_past:
|
| 1869 |
+
input_ids = input_ids[:, -1:]
|
| 1870 |
+
|
| 1871 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 1872 |
+
attention_mask = attention_mask[:, -input_ids.shape[1]:]
|
| 1873 |
+
|
| 1874 |
+
if inputs_embeds is not None and not has_past:
|
| 1875 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1876 |
+
else:
|
| 1877 |
+
model_inputs = {"input_ids": input_ids}
|
| 1878 |
+
|
| 1879 |
+
model_inputs.update(
|
| 1880 |
+
{
|
| 1881 |
+
"past_key_values": past_key_values if has_past else None,
|
| 1882 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1883 |
+
"attention_mask": attention_mask,
|
| 1884 |
+
"pixel_values": pixel_values if not has_past else None,
|
| 1885 |
+
"audio_features": audio_features if not has_past else None,
|
| 1886 |
+
}
|
| 1887 |
+
)
|
| 1888 |
+
return model_inputs
|
| 1889 |
+
|
| 1890 |
+
@staticmethod
|
| 1891 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1892 |
+
reordered_past = ()
|
| 1893 |
+
for layer_past in past_key_values:
|
| 1894 |
+
if layer_past is not None and len(layer_past) > 0:
|
| 1895 |
+
reordered_past += (
|
| 1896 |
+
tuple(
|
| 1897 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 1898 |
+
for past_state in layer_past
|
| 1899 |
+
if past_state is not None
|
| 1900 |
+
),
|
| 1901 |
+
)
|
| 1902 |
+
else:
|
| 1903 |
+
reordered_past += (None,)
|
| 1904 |
+
return reordered_past
|
| 1905 |
+
|
| 1906 |
+
def save_pretrained(self, save_directory, **kwargs):
|
| 1907 |
+
has_quant_config = hasattr(self.config, 'quantization_config')
|
| 1908 |
+
quantization_config_backup = getattr(self.config, 'quantization_config', None)
|
| 1909 |
+
|
| 1910 |
+
if has_quant_config and quantization_config_backup is None:
|
| 1911 |
+
delattr(self.config, 'quantization_config')
|
| 1912 |
+
|
| 1913 |
+
try:
|
| 1914 |
+
super().save_pretrained(save_directory, **kwargs)
|
| 1915 |
+
finally:
|
| 1916 |
+
if has_quant_config:
|
| 1917 |
+
self.config.quantization_config = quantization_config_backup
|
| 1918 |
+
|
| 1919 |
+
class CacaForCausalLMQuantized(CacaForCausalLM):
|
| 1920 |
+
def __init__(self, config, quantization_config=None):
|
| 1921 |
+
super().__init__(config)
|
| 1922 |
+
self.quantization_config = quantization_config
|
| 1923 |
+
if quantization_config:
|
| 1924 |
+
self._apply_quantization()
|
| 1925 |
+
|
| 1926 |
+
def _apply_quantization(self):
|
| 1927 |
+
if self.quantization_config.get("load_in_8bit"):
|
| 1928 |
+
self._quantize_8bit()
|
| 1929 |
+
elif self.quantization_config.get("load_in_4bit"):
|
| 1930 |
+
self._quantize_4bit()
|
| 1931 |
+
|
| 1932 |
+
def _quantize_8bit(self):
|
| 1933 |
+
try:
|
| 1934 |
+
import bitsandbytes as bnb
|
| 1935 |
+
|
| 1936 |
+
for name, module in self.named_modules():
|
| 1937 |
+
if isinstance(module, nn.Linear):
|
| 1938 |
+
has_bias = module.bias is not None
|
| 1939 |
+
new_module = bnb.nn.Linear8bitLt(
|
| 1940 |
+
module.in_features,
|
| 1941 |
+
module.out_features,
|
| 1942 |
+
has_bias,
|
| 1943 |
+
threshold=self.quantization_config.get(
|
| 1944 |
+
"llm_int8_threshold", 6.0
|
| 1945 |
+
),
|
| 1946 |
+
)
|
| 1947 |
+
new_module.weight = module.weight
|
| 1948 |
+
if has_bias:
|
| 1949 |
+
new_module.bias = module.bias
|
| 1950 |
+
parent_name = ".".join(name.split(".")[:-1])
|
| 1951 |
+
child_name = name.split(".")[-1]
|
| 1952 |
+
if parent_name:
|
| 1953 |
+
parent = self.get_submodule(parent_name)
|
| 1954 |
+
setattr(parent, child_name, new_module)
|
| 1955 |
+
else:
|
| 1956 |
+
setattr(self, child_name, new_module)
|
| 1957 |
+
logger.info("Quantisasi 8-bit berhasil diterapkan")
|
| 1958 |
+
except ImportError:
|
| 1959 |
+
logger.error("bitsandbytes tidak terinstall! pip install bitsandbytes")
|
| 1960 |
+
|
| 1961 |
+
def _quantize_4bit(self):
|
| 1962 |
+
try:
|
| 1963 |
+
import bitsandbytes as bnb
|
| 1964 |
+
|
| 1965 |
+
compute_dtype = torch.float16
|
| 1966 |
+
if self.quantization_config.get("bnb_4bit_compute_dtype"):
|
| 1967 |
+
compute_dtype = getattr(
|
| 1968 |
+
torch, self.quantization_config["bnb_4bit_compute_dtype"]
|
| 1969 |
+
)
|
| 1970 |
+
for name, module in self.named_modules():
|
| 1971 |
+
if isinstance(module, nn.Linear):
|
| 1972 |
+
has_bias = module.bias is not None
|
| 1973 |
+
new_module = bnb.nn.Linear4bit(
|
| 1974 |
+
module.in_features,
|
| 1975 |
+
module.out_features,
|
| 1976 |
+
bias=has_bias,
|
| 1977 |
+
compute_dtype=compute_dtype,
|
| 1978 |
+
quant_type=self.quantization_config.get(
|
| 1979 |
+
"bnb_4bit_quant_type", "nf4"
|
| 1980 |
+
),
|
| 1981 |
+
use_double_quant=self.quantization_config.get(
|
| 1982 |
+
"bnb_4bit_use_double_quant", True
|
| 1983 |
+
),
|
| 1984 |
+
)
|
| 1985 |
+
new_module.weight = module.weight
|
| 1986 |
+
if has_bias:
|
| 1987 |
+
new_module.bias = module.bias
|
| 1988 |
+
parent_name = ".".join(name.split(".")[:-1])
|
| 1989 |
+
child_name = name.split(".")[-1]
|
| 1990 |
+
if parent_name:
|
| 1991 |
+
parent = self.get_submodule(parent_name)
|
| 1992 |
+
setattr(parent, child_name, new_module)
|
| 1993 |
+
else:
|
| 1994 |
+
setattr(self, child_name, new_module)
|
| 1995 |
+
logger.info("Quantisasi 4-bit berhasil diterapkan")
|
| 1996 |
+
except ImportError:
|
| 1997 |
+
logger.error("bitsandbytes tidak terinstall!")
|
| 1998 |
+
|
| 1999 |
+
@classmethod
|
| 2000 |
+
def from_pretrained_quantized(cls, model_path, quantization_config):
|
| 2001 |
+
config = CacaConfig.from_pretrained(model_path)
|
| 2002 |
+
model = cls(config, quantization_config=quantization_config)
|
| 2003 |
+
state_dict = torch.load(f"{model_path}/pytorch_model.bin", map_location="cpu")
|
| 2004 |
+
model.load_state_dict(state_dict, strict=False)
|
| 2005 |
+
return model
|