UNKNOWN Fine-tuned for Sentiment Analysis
π Model Description
This model is a fine-tuned version of unknown for sentiment analysis on the UNKNOWN dataset.
Model Architecture: unknown
Task: Binary Sentiment Classification (Positive/Negative)
Language: English
Training Date: N/A
π― Performance Metrics
| Metric | Score |
|---|---|
| Accuracy | 0.0000 |
| F1 Score | 0.0000 |
| Precision | 0.0000 |
| Recall | 0.0000 |
| Loss | 0.0000 |
π§ Training Details
Hyperparameters
{}
Dataset
- Training samples: N/A
- Validation samples: N/A
- Test samples: N/A
π Usage
With Transformers Pipeline
from transformers import pipeline
# Load the model
classifier = pipeline("sentiment-analysis", model="YOUR_USERNAME/YOUR_MODEL_NAME")
# Predict
result = classifier("I love this movie!")
print(result)
# [{'label': 'POSITIVE', 'score': 0.9998}]
Manual Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
model_name = "YOUR_USERNAME/YOUR_MODEL_NAME"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Prepare input
text = "This is an amazing product!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
# Predict
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get result
label_id = torch.argmax(predictions).item()
score = predictions[0][label_id].item()
labels = ["NEGATIVE", "POSITIVE"]
print(f"Label: {labels[label_id]}, Score: {score:.4f}")
π Training Curves
Training history visualization is available in the model files.
π·οΈ Label Mapping
0: NEGATIVE
1: POSITIVE
βοΈ Model Configuration
{}
π Citation
If you use this model, please cite:
@misc{sentiment-model-unknown,
author = {Your Name},
title = {unknown Fine-tuned for Sentiment Analysis},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/YOUR_USERNAME/YOUR_MODEL_NAME}}
}
π€ Contact
For questions or feedback, please open an issue in the repository.
π License
Apache 2.0
π Related Models
Generated with MLflow tracking π
- Downloads last month
- 17
Space using MartinRodrigo/distilbert-sentiment-imdb 1
Evaluation results
- Test Accuracy on UNKNOWNself-reported0.000
- F1 Score on UNKNOWNself-reported0.000
- Precision on UNKNOWNself-reported0.000
- Recall on UNKNOWNself-reported0.000