--- language: en license: apache-2.0 tags: - sentiment-analysis - transformers - unknown - text-classification datasets: - unknown metrics: - accuracy - f1 - precision - recall model-index: - name: unknown-sentiment results: - task: type: text-classification name: Sentiment Analysis dataset: name: UNKNOWN type: unknown metrics: - type: accuracy value: 0.0000 name: Test Accuracy - type: f1 value: 0.0000 name: F1 Score - type: precision value: 0.0000 name: Precision - type: recall value: 0.0000 name: Recall --- # UNKNOWN Fine-tuned for Sentiment Analysis ## 📊 Model Description This model is a fine-tuned version of `unknown` for sentiment analysis on the UNKNOWN dataset. **Model Architecture:** unknown **Task:** Binary Sentiment Classification (Positive/Negative) **Language:** English **Training Date:** N/A ## 🎯 Performance Metrics | Metric | Score | |--------|-------| | **Accuracy** | 0.0000 | | **F1 Score** | 0.0000 | | **Precision** | 0.0000 | | **Recall** | 0.0000 | | **Loss** | 0.0000 | ## 🔧 Training Details ### Hyperparameters ```json {} ``` ### Dataset - **Training samples:** N/A - **Validation samples:** N/A - **Test samples:** N/A ## 🚀 Usage ### With Transformers Pipeline ```python from transformers import pipeline # Load the model classifier = pipeline("sentiment-analysis", model="YOUR_USERNAME/YOUR_MODEL_NAME") # Predict result = classifier("I love this movie!") print(result) # [{'label': 'POSITIVE', 'score': 0.9998}] ``` ### Manual Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model and tokenizer model_name = "YOUR_USERNAME/YOUR_MODEL_NAME" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Prepare input text = "This is an amazing product!" inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) # Predict with torch.no_grad(): outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) # Get result label_id = torch.argmax(predictions).item() score = predictions[0][label_id].item() labels = ["NEGATIVE", "POSITIVE"] print(f"Label: {labels[label_id]}, Score: {score:.4f}") ``` ## 📈 Training Curves Training history visualization is available in the model files. ## 🏷️ Label Mapping ``` 0: NEGATIVE 1: POSITIVE ``` ## ⚙️ Model Configuration ```json {} ``` ## 📝 Citation If you use this model, please cite: ```bibtex @misc{sentiment-model-unknown, author = {Your Name}, title = {unknown Fine-tuned for Sentiment Analysis}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/YOUR_USERNAME/YOUR_MODEL_NAME}} } ``` ## 🤝 Contact For questions or feedback, please open an issue in the repository. ## 📄 License Apache 2.0 ## 🔗 Related Models - [unknown](https://huggingface.co/unknown) --- **Generated with MLflow tracking** 🚀