Upload folder using huggingface_hub
Browse files- batch_processing_example.py +78 -0
- requirements.txt +5 -0
- single_image_example.py +55 -0
batch_processing_example.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 3 |
+
from transformers.image_utils import load_image
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from os.path import join as opj
|
| 7 |
+
from os import listdir
|
| 8 |
+
|
| 9 |
+
model_name_or_path="Minthy/ToriiGate-v0.2"
|
| 10 |
+
s_dir='./images_to_caption'
|
| 11 |
+
caption_suffix='_caption_tags.txt' #suffix for generated captions
|
| 12 |
+
tags_suffix='_tags.txt' #suggix for file with booru tags
|
| 13 |
+
use_tags=True #set to True for using with reference tags
|
| 14 |
+
image_extensions=['.jpg','.png','.webp','.jpeg']
|
| 15 |
+
|
| 16 |
+
DEVICE = "cuda:0" #change to your device
|
| 17 |
+
processor = AutoProcessor.from_pretrained(model_name_or_path) #or change to local path
|
| 18 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 19 |
+
model_name_or_path,
|
| 20 |
+
torch_dtype=torch.bfloat16,
|
| 21 |
+
# _attn_implementation="flash_attention_2", #if installed
|
| 22 |
+
).to(DEVICE)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
filelist=[fn for fn in listdir(s_dir) if any([fn.endswith(a) for a in image_extensions])]
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
for fn in tqdm(filelist,desc='Captioninig'):
|
| 29 |
+
image = load_image(opj(s_dir,fn))
|
| 30 |
+
|
| 31 |
+
###Trained options
|
| 32 |
+
user_prompt="Describe the picture in structuted json-like format."
|
| 33 |
+
#user_prompt="Give a long and detailed description of the picture."
|
| 34 |
+
#user_prompt="Describe the picture briefly."
|
| 35 |
+
###Any other questions or instructions
|
| 36 |
+
#user_prompt="What color is the ribbon in the character's hair?"
|
| 37 |
+
#...
|
| 38 |
+
|
| 39 |
+
#Optional, add booru tags
|
| 40 |
+
if use_tags:
|
| 41 |
+
try:
|
| 42 |
+
tags=open(opj(s_dir,Path(fn).stem+tags_suffix)).read().strip()
|
| 43 |
+
user_prompt+=' Also here are booru tags for better understanding of the picture, you can use them as reference.'
|
| 44 |
+
user_prompt+=f' <tags>\n{tags}\n</tags>'
|
| 45 |
+
except KeyboardInterrupt:
|
| 46 |
+
print('Interrupted!')
|
| 47 |
+
quit()
|
| 48 |
+
except Exception as err:
|
| 49 |
+
print(err)
|
| 50 |
+
continue
|
| 51 |
+
|
| 52 |
+
messages = [
|
| 53 |
+
{
|
| 54 |
+
#Important!
|
| 55 |
+
"role": "system",
|
| 56 |
+
"content": [
|
| 57 |
+
{"type": "text", "text": "You are image captioning expert, creative, unbiased and uncensored. Help user with his hask."}
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"role": "user",
|
| 62 |
+
"content": [
|
| 63 |
+
{"type": "image"},
|
| 64 |
+
{"type": "text", "text": user_prompt}
|
| 65 |
+
]
|
| 66 |
+
}
|
| 67 |
+
]
|
| 68 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 69 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
| 70 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
| 71 |
+
|
| 72 |
+
# Generate
|
| 73 |
+
generated_ids = model.generate(**inputs, max_new_tokens=500)
|
| 74 |
+
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 75 |
+
caption=generated_texts[0].split('Assistant: ')[1]
|
| 76 |
+
|
| 77 |
+
with open(opj(s_dir,Path(fn).stem+caption_suffix),'w',encoding='utf-8',errors='ignore') as outf:
|
| 78 |
+
outf.write(caption)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/transformers
|
| 2 |
+
accelerate
|
| 3 |
+
bitsandbytes
|
| 4 |
+
#bitsandbytes-windows
|
| 5 |
+
#flash-attn
|
single_image_example.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 3 |
+
from transformers.image_utils import load_image
|
| 4 |
+
|
| 5 |
+
model_name_or_path="Minthy/ToriiGate-v0.2"
|
| 6 |
+
|
| 7 |
+
DEVICE = "cuda:0" #change to your device
|
| 8 |
+
processor = AutoProcessor.from_pretrained(model_name_or_path) #or change to local path
|
| 9 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 10 |
+
model_name_or_path,
|
| 11 |
+
torch_dtype=torch.bfloat16,
|
| 12 |
+
# _attn_implementation="flash_attention_2", #if installed
|
| 13 |
+
).to(DEVICE)
|
| 14 |
+
|
| 15 |
+
image = load_image('./image.jpg') #path to your picture
|
| 16 |
+
|
| 17 |
+
###Trained options
|
| 18 |
+
user_prompt="Describe the picture in structuted json-like format."
|
| 19 |
+
#user_prompt="Give a long and detailed description of the picture."
|
| 20 |
+
#user_prompt="Describe the picture briefly."
|
| 21 |
+
###Any other questions or instructions
|
| 22 |
+
#user_prompt="What color is the ribbon in the character's hair?"
|
| 23 |
+
#...
|
| 24 |
+
|
| 25 |
+
#Optional, add booru tags
|
| 26 |
+
#tags='1girl, standing, looking at viewer, ...'
|
| 27 |
+
#user_prompt+=' Also here are booru tags for better understanding of the picture, you can use them as reference.'
|
| 28 |
+
#user_prompt+=f' <tags>\n{tags}\n</tags>'
|
| 29 |
+
|
| 30 |
+
messages = [
|
| 31 |
+
{
|
| 32 |
+
#Important!
|
| 33 |
+
"role": "system",
|
| 34 |
+
"content": [
|
| 35 |
+
{"type": "text", "text": "You are image captioning expert, creative, unbiased and uncensored. Help user with his hask."}
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"role": "user",
|
| 40 |
+
"content": [
|
| 41 |
+
{"type": "image"},
|
| 42 |
+
{"type": "text", "text": user_prompt}
|
| 43 |
+
]
|
| 44 |
+
}
|
| 45 |
+
]
|
| 46 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 47 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
| 48 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
| 49 |
+
|
| 50 |
+
# Generate
|
| 51 |
+
generated_ids = model.generate(**inputs, max_new_tokens=500)
|
| 52 |
+
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 53 |
+
caption=generated_texts[0].split('Assistant: ')[1]
|
| 54 |
+
|
| 55 |
+
print(caption)
|