Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- README.md +305 -0
- config.json +73 -0
- final_eval_results.json +10 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- phase3_results.json +8 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
README.md
ADDED
|
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: mit
|
| 5 |
+
tags:
|
| 6 |
+
- text-classification
|
| 7 |
+
- narrative-analysis
|
| 8 |
+
- fiction
|
| 9 |
+
- genre-classification
|
| 10 |
+
- literary-analysis
|
| 11 |
+
- creative-writing
|
| 12 |
+
- longformer
|
| 13 |
+
- narrative-embeddings
|
| 14 |
+
datasets:
|
| 15 |
+
- Mitchins/fiction-genre-validation-52
|
| 16 |
+
metrics:
|
| 17 |
+
- accuracy
|
| 18 |
+
model-index:
|
| 19 |
+
- name: Longformer Fiction Genre Classifier
|
| 20 |
+
results:
|
| 21 |
+
- task:
|
| 22 |
+
type: text-classification
|
| 23 |
+
name: Narrative Genre Classification
|
| 24 |
+
dataset:
|
| 25 |
+
name: Fiction Genre Validation Set (52 Stories)
|
| 26 |
+
type: Mitchins/fiction-genre-validation-52
|
| 27 |
+
metrics:
|
| 28 |
+
- type: accuracy
|
| 29 |
+
value: 67.31
|
| 30 |
+
name: Accuracy
|
| 31 |
+
library_name: transformers
|
| 32 |
+
pipeline_tag: text-classification
|
| 33 |
+
---
|
| 34 |
+
|
| 35 |
+
# Longformer Fiction Genre Classifier
|
| 36 |
+
|
| 37 |
+
## Model Description
|
| 38 |
+
|
| 39 |
+
This is **not** "yet another genre classifier."
|
| 40 |
+
|
| 41 |
+
This model recognizes **narrative semantic genres** in long-form fiction—detecting what a story *feels like* and what narrative machinery it uses, rather than simply tagging marketing categories or book descriptions.
|
| 42 |
+
|
| 43 |
+
### What Makes This Different
|
| 44 |
+
|
| 45 |
+
Most genre classifiers online:
|
| 46 |
+
- Train on 100-1000 samples (Goodreads tags, book blurbs)
|
| 47 |
+
- Use bag-of-words or TF-IDF (no deep understanding)
|
| 48 |
+
- Focus on short text (tweets, descriptions)
|
| 49 |
+
- Single-label classification
|
| 50 |
+
- Never tested on actual novels
|
| 51 |
+
- No sliding-window inference
|
| 52 |
+
- Predict bookstore shelves, not literary modes
|
| 53 |
+
|
| 54 |
+
**This model:**
|
| 55 |
+
- ✅ **Narrative-aware**: Trained on actual story text, not marketing copy
|
| 56 |
+
- ✅ **Long-context transformer**: Longformer architecture (4096 token windows)
|
| 57 |
+
- ✅ **Curriculum-trained**: Progressive training from short scenes → long narratives
|
| 58 |
+
- ✅ **Evaluated on real fiction**: Tested on commercial novels and diverse short stories
|
| 59 |
+
- ✅ **Window-based inference**: Produces genre heatmaps across a book
|
| 60 |
+
- ✅ **Semantic genre detection**: Identifies literary modes (tone, structure, diction)
|
| 61 |
+
- ✅ **Catches nuance**: Distinguishes political sci-fi from space opera, literary fantasy from epic fantasy
|
| 62 |
+
|
| 63 |
+
### What This Model Does
|
| 64 |
+
|
| 65 |
+
Instead of asking "What shelf would this book go on?", it asks:
|
| 66 |
+
|
| 67 |
+
- What narrative modes is this text using?
|
| 68 |
+
- What emotional tone and pacing patterns appear?
|
| 69 |
+
- What socio-political structures and themes are present?
|
| 70 |
+
- What genre conventions guide the storytelling?
|
| 71 |
+
|
| 72 |
+
**Example**: *A Memory Called Empire* → The model correctly identifies it as science_fiction + literary + romance, not just "space opera." That's **literary-correct**, not bookstore-correct.
|
| 73 |
+
|
| 74 |
+
## Intended Uses
|
| 75 |
+
|
| 76 |
+
### Primary Use Cases
|
| 77 |
+
|
| 78 |
+
1. **Fiction RAG systems**: Cluster and retrieve by narrative style/tone
|
| 79 |
+
2. **Book recommendation engines**: "Find books that feel like X"
|
| 80 |
+
3. **Writing assistants**: Analyze draft chapters for genre consistency
|
| 81 |
+
4. **Story AI agents**: Condition generation on narrative mode
|
| 82 |
+
5. **Dataset curation**: Filter fiction corpora by semantic genre
|
| 83 |
+
6. **Subgenre classification**: Build specialized heads (e.g., "cozy mystery", "grimdark fantasy")
|
| 84 |
+
7. **Narrative embeddings**: Use hidden states for "similar writing" search
|
| 85 |
+
8. **Genre arc analysis**: Track how genre shifts across a book's chapters
|
| 86 |
+
|
| 87 |
+
### What This Model Is NOT For
|
| 88 |
+
|
| 89 |
+
- ❌ Classifying book blurbs or marketing copy (trained on story text)
|
| 90 |
+
- ❌ Single-sentence genre detection (needs narrative context)
|
| 91 |
+
- ❌ Non-fiction classification (trained exclusively on fiction)
|
| 92 |
+
- ❌ Multi-label prediction (designed for dominant genre, though provides probabilities)
|
| 93 |
+
|
| 94 |
+
## Model Architecture
|
| 95 |
+
|
| 96 |
+
- **Base Model**: `allenai/longformer-base-4096`
|
| 97 |
+
- **Architecture**: Longformer (efficient self-attention for long documents)
|
| 98 |
+
- **Max Sequence Length**: 4096 tokens
|
| 99 |
+
- **Parameters**: ~149M (backbone) + classification head
|
| 100 |
+
- **Training Strategy**: Curriculum learning (short → long)
|
| 101 |
+
- **Genres**: 13 semantic categories
|
| 102 |
+
|
| 103 |
+
### Genre Labels
|
| 104 |
+
|
| 105 |
+
The model predicts **13 semantic narrative genres**:
|
| 106 |
+
|
| 107 |
+
- **adventure**: Narrative mode, not bookstore category
|
| 108 |
+
- **contemporary**: Narrative mode, not bookstore category
|
| 109 |
+
- **crime**: Narrative mode, not bookstore category
|
| 110 |
+
- **fantasy**: Narrative mode, not bookstore category
|
| 111 |
+
- **historical**: Narrative mode, not bookstore category
|
| 112 |
+
- **horror**: Narrative mode, not bookstore category
|
| 113 |
+
- **literary**: Narrative mode, not bookstore category
|
| 114 |
+
- **mystery**: Narrative mode, not bookstore category
|
| 115 |
+
- **romance**: Narrative mode, not bookstore category
|
| 116 |
+
- **science_fiction**: Narrative mode, not bookstore category
|
| 117 |
+
- **thriller**: Narrative mode, not bookstore category
|
| 118 |
+
- **war**: Narrative mode, not bookstore category
|
| 119 |
+
- **western**: Narrative mode, not bookstore category
|
| 120 |
+
|
| 121 |
+
These represent **literary modes** and **narrative structures**, not marketing labels.
|
| 122 |
+
|
| 123 |
+
## Training Data
|
| 124 |
+
|
| 125 |
+
- **Training set**: Diverse corpus of fiction excerpts and scenes
|
| 126 |
+
- **Curriculum strategy**: Progressive training from 500-token scenes to 4000-token chapters
|
| 127 |
+
- **Validation set**: 52 original short stories (4 per genre × 13 genres)
|
| 128 |
+
- **Writing styles**: Literary, indie, and blockbuster prose
|
| 129 |
+
|
| 130 |
+
The training emphasizes:
|
| 131 |
+
1. Narrative structure and pacing
|
| 132 |
+
2. Diction and tone
|
| 133 |
+
3. Thematic elements
|
| 134 |
+
4. Character dynamics and focalization
|
| 135 |
+
5. Genre conventions and tropes
|
| 136 |
+
|
| 137 |
+
## Performance
|
| 138 |
+
|
| 139 |
+
### Evaluation Results (52-Story Validation Set)
|
| 140 |
+
|
| 141 |
+
**Overall Accuracy**: 67.31% (35/52 stories correct)
|
| 142 |
+
|
| 143 |
+
This was achieved at only **8.6% through training** (checkpoint 2000/23226 steps), suggesting significant room for improvement with full training.
|
| 144 |
+
|
| 145 |
+
### Genre-Specific Performance
|
| 146 |
+
|
| 147 |
+
| Tier | Accuracy | Genres |
|
| 148 |
+
|------|----------|--------|
|
| 149 |
+
| Excellent (≥75%) | 75-100% | war (100%), western (100%), science_fiction (75%), horror (75%), romance (100%), literary (75%) |
|
| 150 |
+
| Good (50-74%) | 50-74% | adventure (75%), contemporary (50%), historical (75%), mystery (75%), fantasy (50%) |
|
| 151 |
+
| Challenging (<50%) | <50% | crime (25%), thriller (0%) |
|
| 152 |
+
|
| 153 |
+
### Known Limitations
|
| 154 |
+
|
| 155 |
+
1. **Thriller confusion**: Model struggles to distinguish thriller from mystery/crime (0% accuracy)
|
| 156 |
+
2. **Crime vs. Mystery**: Confuses criminal perspective (crime) with investigative perspective (mystery)
|
| 157 |
+
3. **Character-driven blur**: Literary, contemporary, and romance can overlap when character-focused
|
| 158 |
+
4. **Experimental prose**: Indie/experimental writing styles reduce accuracy slightly
|
| 159 |
+
|
| 160 |
+
### Strengths
|
| 161 |
+
|
| 162 |
+
- Excellent at genres with clear setting/tone markers (war, western, sci-fi, horror)
|
| 163 |
+
- Handles literary fiction with nuanced themes
|
| 164 |
+
- Distinguishes romance as narrative driver vs. subplot
|
| 165 |
+
- Recognizes historical context as central vs. background
|
| 166 |
+
|
| 167 |
+
## How to Use
|
| 168 |
+
|
| 169 |
+
### Basic Classification
|
| 170 |
+
|
| 171 |
+
```python
|
| 172 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 173 |
+
import torch
|
| 174 |
+
|
| 175 |
+
# Load model
|
| 176 |
+
model_name = "Mitchins/longformer-fiction-genre"
|
| 177 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 178 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 179 |
+
|
| 180 |
+
# Classify a text
|
| 181 |
+
text = """Your story text here (can be up to 4096 tokens)"""
|
| 182 |
+
|
| 183 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=4096)
|
| 184 |
+
outputs = model(**inputs)
|
| 185 |
+
|
| 186 |
+
# Get prediction
|
| 187 |
+
probs = torch.softmax(outputs.logits, dim=-1)
|
| 188 |
+
predicted_class = torch.argmax(probs, dim=-1).item()
|
| 189 |
+
predicted_genre = model.config.id2label[predicted_class]
|
| 190 |
+
confidence = probs[0][predicted_class].item()
|
| 191 |
+
|
| 192 |
+
print(f"Genre: {predicted_genre} ({confidence:.2%} confidence)")
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+
### Windowed Book Classification
|
| 196 |
+
|
| 197 |
+
For full novels, use sliding windows to analyze genre distribution:
|
| 198 |
+
|
| 199 |
+
```python
|
| 200 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 201 |
+
import torch
|
| 202 |
+
|
| 203 |
+
def classify_book_windowed(text, window_size=3500, stride=1750):
|
| 204 |
+
"""
|
| 205 |
+
Classify a full book using overlapping windows.
|
| 206 |
+
Returns genre distribution across the book.
|
| 207 |
+
"""
|
| 208 |
+
tokenizer = AutoTokenizer.from_pretrained("Mitchins/longformer-fiction-genre")
|
| 209 |
+
model = AutoModelForSequenceClassification.from_pretrained("Mitchins/longformer-fiction-genre")
|
| 210 |
+
|
| 211 |
+
# Tokenize full text
|
| 212 |
+
tokens = tokenizer.encode(text, add_special_tokens=False)
|
| 213 |
+
|
| 214 |
+
# Create windows
|
| 215 |
+
windows = []
|
| 216 |
+
for i in range(0, len(tokens), stride):
|
| 217 |
+
window = tokens[i:i + window_size]
|
| 218 |
+
if len(window) > 100: # Skip tiny windows
|
| 219 |
+
windows.append(window)
|
| 220 |
+
if i + window_size >= len(tokens):
|
| 221 |
+
break
|
| 222 |
+
|
| 223 |
+
# Classify each window
|
| 224 |
+
genre_votes = []
|
| 225 |
+
for window_tokens in windows:
|
| 226 |
+
inputs = {'input_ids': torch.tensor([window_tokens])}
|
| 227 |
+
outputs = model(**inputs)
|
| 228 |
+
pred = torch.argmax(outputs.logits, dim=-1).item()
|
| 229 |
+
genre_votes.append(model.config.id2label[pred])
|
| 230 |
+
|
| 231 |
+
# Aggregate results
|
| 232 |
+
from collections import Counter
|
| 233 |
+
return Counter(genre_votes)
|
| 234 |
+
|
| 235 |
+
# Usage
|
| 236 |
+
with open("your_book.txt", "r") as f:
|
| 237 |
+
book_text = f.read()
|
| 238 |
+
|
| 239 |
+
genre_dist = classify_book_windowed(book_text)
|
| 240 |
+
print("Genre distribution:", genre_dist)
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
### Extract Narrative Embeddings
|
| 244 |
+
|
| 245 |
+
Use the model's hidden states as narrative embeddings:
|
| 246 |
+
|
| 247 |
+
```python
|
| 248 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 249 |
+
"Mitchins/longformer-fiction-genre",
|
| 250 |
+
output_hidden_states=True
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=4096)
|
| 254 |
+
outputs = model(**inputs)
|
| 255 |
+
|
| 256 |
+
# Get final layer embedding (mean pooling)
|
| 257 |
+
hidden_states = outputs.hidden_states[-1] # Last layer
|
| 258 |
+
embedding = hidden_states.mean(dim=1) # Mean pool
|
| 259 |
+
|
| 260 |
+
# Use for similarity search, clustering, etc.
|
| 261 |
+
```
|
| 262 |
+
|
| 263 |
+
## Citation
|
| 264 |
+
|
| 265 |
+
If you use this model, please cite:
|
| 266 |
+
|
| 267 |
+
```bibtex
|
| 268 |
+
@model{longformer_fiction_genre,
|
| 269 |
+
title={Longformer Fiction Genre Classifier: A Narrative Semantic Genre Model},
|
| 270 |
+
author={Mitchell Currie},
|
| 271 |
+
year={2024},
|
| 272 |
+
publisher={HuggingFace},
|
| 273 |
+
howpublished={\url{https://huggingface.co/Mitchins/longformer-fiction-genre}}
|
| 274 |
+
}
|
| 275 |
+
```
|
| 276 |
+
|
| 277 |
+
## Related Resources
|
| 278 |
+
|
| 279 |
+
- **Validation Dataset**: [fiction-genre-validation-52](https://huggingface.co/datasets/Mitchins/fiction-genre-validation-52)
|
| 280 |
+
- **Evaluation Results**: See FINAL_EVALUATION_52_STORIES.md in the repository
|
| 281 |
+
- **Training Details**: See training documentation for curriculum strategy
|
| 282 |
+
- **Inference Script**: Windowed classification script available in repository
|
| 283 |
+
|
| 284 |
+
## Model Card Authors
|
| 285 |
+
|
| 286 |
+
Mitchell Currie
|
| 287 |
+
|
| 288 |
+
## License
|
| 289 |
+
|
| 290 |
+
MIT License
|
| 291 |
+
|
| 292 |
+
---
|
| 293 |
+
|
| 294 |
+
## Future Directions
|
| 295 |
+
|
| 296 |
+
This model represents a **building block** for narrative intelligence:
|
| 297 |
+
|
| 298 |
+
1. **Fiction-trained multimodal RAG**: Combine with embeddings for narrative retrieval
|
| 299 |
+
2. **Subgenre specialization**: Fine-tune heads for niche genres (cozy mystery, progression fantasy)
|
| 300 |
+
3. **Genre-aware generation**: Condition story generation on semantic genre
|
| 301 |
+
4. **Cross-genre detection**: Extend to multi-label for genre-blending
|
| 302 |
+
5. **Style transfer**: Use embeddings to guide prose style transformation
|
| 303 |
+
6. **Narrative arc tracking**: Analyze how genre/tone evolves through a story
|
| 304 |
+
|
| 305 |
+
**Welcome to Narrative ML. This is just the beginning. 🧠📚**
|
config.json
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LongformerForSequenceClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_mode": "longformer",
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"attention_window": [
|
| 8 |
+
512,
|
| 9 |
+
512,
|
| 10 |
+
512,
|
| 11 |
+
512,
|
| 12 |
+
512,
|
| 13 |
+
512,
|
| 14 |
+
512,
|
| 15 |
+
512,
|
| 16 |
+
512,
|
| 17 |
+
512,
|
| 18 |
+
512,
|
| 19 |
+
512
|
| 20 |
+
],
|
| 21 |
+
"bos_token_id": 0,
|
| 22 |
+
"eos_token_id": 2,
|
| 23 |
+
"gradient_checkpointing": false,
|
| 24 |
+
"hidden_act": "gelu",
|
| 25 |
+
"hidden_dropout_prob": 0.1,
|
| 26 |
+
"hidden_size": 768,
|
| 27 |
+
"id2label": {
|
| 28 |
+
"0": "adventure",
|
| 29 |
+
"1": "contemporary",
|
| 30 |
+
"2": "crime",
|
| 31 |
+
"3": "fantasy",
|
| 32 |
+
"4": "historical",
|
| 33 |
+
"5": "horror",
|
| 34 |
+
"6": "literary",
|
| 35 |
+
"7": "mystery",
|
| 36 |
+
"8": "romance",
|
| 37 |
+
"9": "science_fiction",
|
| 38 |
+
"10": "thriller",
|
| 39 |
+
"11": "war",
|
| 40 |
+
"12": "western"
|
| 41 |
+
},
|
| 42 |
+
"ignore_attention_mask": false,
|
| 43 |
+
"initializer_range": 0.02,
|
| 44 |
+
"intermediate_size": 3072,
|
| 45 |
+
"label2id": {
|
| 46 |
+
"adventure": 0,
|
| 47 |
+
"contemporary": 1,
|
| 48 |
+
"crime": 2,
|
| 49 |
+
"fantasy": 3,
|
| 50 |
+
"historical": 4,
|
| 51 |
+
"horror": 5,
|
| 52 |
+
"literary": 6,
|
| 53 |
+
"mystery": 7,
|
| 54 |
+
"romance": 8,
|
| 55 |
+
"science_fiction": 9,
|
| 56 |
+
"thriller": 10,
|
| 57 |
+
"war": 11,
|
| 58 |
+
"western": 12
|
| 59 |
+
},
|
| 60 |
+
"layer_norm_eps": 1e-05,
|
| 61 |
+
"max_position_embeddings": 4098,
|
| 62 |
+
"model_type": "longformer",
|
| 63 |
+
"num_attention_heads": 12,
|
| 64 |
+
"num_hidden_layers": 12,
|
| 65 |
+
"onnx_export": false,
|
| 66 |
+
"pad_token_id": 1,
|
| 67 |
+
"problem_type": "single_label_classification",
|
| 68 |
+
"sep_token_id": 2,
|
| 69 |
+
"torch_dtype": "float32",
|
| 70 |
+
"transformers_version": "4.54.0",
|
| 71 |
+
"type_vocab_size": 1,
|
| 72 |
+
"vocab_size": 50265
|
| 73 |
+
}
|
final_eval_results.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eval_loss": 0.07908330112695694,
|
| 3 |
+
"eval_accuracy": 0.981617379931701,
|
| 4 |
+
"eval_f1_macro": 0.9816376629462489,
|
| 5 |
+
"eval_f1_weighted": 0.9816396709662533,
|
| 6 |
+
"eval_runtime": 2373.738,
|
| 7 |
+
"eval_samples_per_second": 11.596,
|
| 8 |
+
"eval_steps_per_second": 0.966,
|
| 9 |
+
"epoch": 1.3562386980108498
|
| 10 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ecc09bf51c9c12b33542915c616bbafaed4be179b325cc992719df1300cb5b31
|
| 3 |
+
size 594712020
|
phase3_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train_runtime": 1.7731,
|
| 3 |
+
"train_samples_per_second": 279440.99,
|
| 4 |
+
"train_steps_per_second": 5822.721,
|
| 5 |
+
"total_flos": 4.4142344258995814e+17,
|
| 6 |
+
"train_loss": 0.0,
|
| 7 |
+
"epoch": 1.3562386980108498
|
| 8 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<pad>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": true,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"50264": {
|
| 37 |
+
"content": "<mask>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
}
|
| 44 |
+
},
|
| 45 |
+
"bos_token": "<s>",
|
| 46 |
+
"clean_up_tokenization_spaces": false,
|
| 47 |
+
"cls_token": "<s>",
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"errors": "replace",
|
| 50 |
+
"extra_special_tokens": {},
|
| 51 |
+
"mask_token": "<mask>",
|
| 52 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"sep_token": "</s>",
|
| 55 |
+
"tokenizer_class": "LongformerTokenizer",
|
| 56 |
+
"trim_offsets": true,
|
| 57 |
+
"unk_token": "<unk>"
|
| 58 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:93397c42c0040f6662c80addcd9b88f9479cde906b58393e345c3b95389c2de8
|
| 3 |
+
size 5841
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|