File size: 5,569 Bytes
22861e8 0cb7eb1 532087c dd76804 532087c 22861e8 532087c 1b7c23d 532087c 46d7006 d3c74f7 532087c 22861e8 532087c 1b7c23d 532087c 22861e8 532087c d01fc69 d706ac4 532087c 0cb7eb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-xl-base-1.0
dataset: NYUAD-ComNets/Asian_Female_Profession
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# Model description
This model is a part of project targeting Debiasing of generative stable diffusion models.
LoRA text2image fine-tuning - NYUAD-ComNets/Asian_Female_Profession_Model
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the NYUAD-ComNets/Asian_Female_Profession dataset.
You can find some example images.
prompt: a photo of a {profession}, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus
# How to use this model:
``` python
import torch
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
import random
negative_prompt = "cartoon, anime, 3d, painting, b&w, low quality"
models=["NYUAD-ComNets/Asian_Female_Profession_Model","NYUAD-ComNets/Black_Female_Profession_Model","NYUAD-ComNets/White_Female_Profession_Model",
"NYUAD-ComNets/Indian_Female_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Female_Profession_Model","NYUAD-ComNets/Middle_Eastern_Female_Profession_Model",
"NYUAD-ComNets/Asian_Male_Profession_Model","NYUAD-ComNets/Black_Male_Profession_Model","NYUAD-ComNets/White_Male_Profession_Model",
"NYUAD-ComNets/Indian_Male_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Male_Profession_Model","NYUAD-ComNets/Middle_Eastern_Male_Profession_Model"]
adapters=["asian_female","black_female","white_female","indian_female","latino_female","middle_east_female",
"asian_male","black_male","white_male","indian_male","latino_male","middle_east_male"]
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to("cuda")
for i,j in zip(models,adapters):
pipeline.load_lora_weights(i, weight_name="pytorch_lora_weights.safetensors",adapter_name=j)
pipeline.set_adapters(random.choice(adapters))
compel = Compel(tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],truncate_long_prompts=False)
conditioning, pooled = compel("a photo of a doctor, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus")
negative_conditioning, negative_pooled = compel(negative_prompt)
[conditioning, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])
image = pipeline(prompt_embeds=conditioning, negative_prompt_embeds=negative_conditioning,
pooled_prompt_embeds=pooled, negative_pooled_prompt_embeds=negative_pooled,
num_inference_steps=40).images[0]
image.save('/../../x.jpg')
```
# Examples
| | | |
|:-------------------------:|:-------------------------:|:-------------------------:|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./0.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./180.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./9.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./11.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./222.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./71.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./154.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./52.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./655.jpg">|
|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./169.jpg"> | <img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./54.jpg">|<img width="500" alt="screen shot 2017-08-07 at 12 18 15 pm" src="./6.jpg">|
# Training data
NYUAD-ComNets/Asian_Female_Profession dataset was used to fine-tune stabilityai/stable-diffusion-xl-base-1.0
profession list =['pilot','doctor','nurse','pharmacist','dietitian','professor','teacher','mathematics scientist','computer engineer','programmer','tailor','cleaner',
'soldier','security guard','lawyer','manager','accountant','secretary','singer','journalist','youtuber','tiktoker','fashion model','chef','sushi chef']
# Configurations
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
# BibTeX entry and citation info
```
@article{aldahoul2025ai,
title={AI-generated faces influence gender stereotypes and racial homogenization},
author={AlDahoul, Nouar and Rahwan, Talal and Zaki, Yasir},
journal={Scientific reports},
volume={15},
number={1},
pages={14449},
year={2025},
publisher={Nature Publishing Group UK London}
}
@article{aldahoul2024ai,
title={AI-generated faces free from racial and gender stereotypes},
author={AlDahoul, Nouar and Rahwan, Talal and Zaki, Yasir},
journal={arXiv preprint arXiv:2402.01002},
year={2024}
}
@misc{ComNets,
url={[https://huggingface.co/NYUAD-ComNets/Asian_Female_Profession_Model](https://huggingface.co/NYUAD-ComNets/Asian_Female_Profession_Model)},
title={Asian_Female_Profession_Model},
author={Nouar AlDahoul, Talal Rahwan, Yasir Zaki}
}
```
|