metadata
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: Face off with a ref mid-hockey game in an arena.
sentences:
- Nobody is playing
- >-
A mustached man in a patterned shirt watches a boat painted blue and
orange.
- Two adults makes calls on there cell phones during there lunch breaks.
- source_sentence: >-
A group of people, one holding a yellow and blue umbrella, are standing at
the top of some stairs.
sentences:
- One person wields an umbrella.
- A girl is on the beach.
- A man is on his couch.
- source_sentence: >-
A man waiting for the results of the machine after doing an experiment in
his laboratory.
sentences:
- There is a man playing an instrument while running
- A man in a lab waits to get more information about his experiment.
- The graffiti artists admire their work.
- source_sentence: People in a tent shelter near the bottom of stairs.
sentences:
- A boy has fallen asleep during dinner.
- Three men address a crowd.
- People are in a makeshift shelter at the foot of a staircase.
- source_sentence: A female researcher looking through a microscope.
sentences:
- A man misses the rope and falls
- A small girl is playing video games
- A woman is researching with a microscope.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: snli dev
type: snli-dev
metrics:
- type: pearson_cosine
value: 0.48994508338253345
name: Pearson Cosine
- type: spearman_cosine
value: 0.4778683474663533
name: Spearman Cosine
- type: pearson_manhattan
value: 0.46917600703738915
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.47754796729416876
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.46924620767742137
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.4778683474663533
name: Spearman Euclidean
- type: pearson_dot
value: 0.48994508631435785
name: Pearson Dot
- type: spearman_dot
value: 0.4778683472855999
name: Spearman Dot
- type: pearson_max
value: 0.48994508631435785
name: Pearson Max
- type: spearman_max
value: 0.4778683474663533
name: Spearman Max
SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nessrine9/finetuned2-snli-MiniLM-L12-v2")
# Run inference
sentences = [
'A female researcher looking through a microscope.',
'A woman is researching with a microscope.',
'A small girl is playing video games',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
snli-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.4899 |
| spearman_cosine | 0.4779 |
| pearson_manhattan | 0.4692 |
| spearman_manhattan | 0.4775 |
| pearson_euclidean | 0.4692 |
| spearman_euclidean | 0.4779 |
| pearson_dot | 0.4899 |
| spearman_dot | 0.4779 |
| pearson_max | 0.4899 |
| spearman_max | 0.4779 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 100,000 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 16.32 tokens
- max: 86 tokens
- min: 4 tokens
- mean: 10.46 tokens
- max: 32 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label A man wearing jeans and a t-shirt plays guitar for a smiling woman and child as they sit on a staircase near red and orange balloons.A man is in jail.1.0A boy wearing blue short standing on the traffic signal pole.The boy is carrying his school books.0.5Several people on a busy street or perhaps at a fair.They are walkng.0.5 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | snli-dev_spearman_max |
|---|---|---|---|
| 0.08 | 500 | 0.1832 | 0.3114 |
| 0.16 | 1000 | 0.1489 | 0.3518 |
| 0.24 | 1500 | 0.1468 | 0.3697 |
| 0.32 | 2000 | 0.1411 | 0.3723 |
| 0.4 | 2500 | 0.14 | 0.4062 |
| 0.48 | 3000 | 0.1366 | 0.3923 |
| 0.56 | 3500 | 0.1379 | 0.4143 |
| 0.64 | 4000 | 0.1357 | 0.3928 |
| 0.72 | 4500 | 0.1331 | 0.4067 |
| 0.8 | 5000 | 0.1338 | 0.4293 |
| 0.88 | 5500 | 0.1294 | 0.4183 |
| 0.96 | 6000 | 0.1305 | 0.4402 |
| 1.0 | 6250 | - | 0.4454 |
| 1.04 | 6500 | 0.1303 | 0.4408 |
| 1.12 | 7000 | 0.1275 | 0.4416 |
| 1.2 | 7500 | 0.1285 | 0.4287 |
| 1.28 | 8000 | 0.125 | 0.4404 |
| 1.3600 | 8500 | 0.1253 | 0.4408 |
| 1.44 | 9000 | 0.1246 | 0.4293 |
| 1.52 | 9500 | 0.126 | 0.4535 |
| 1.6 | 10000 | 0.1257 | 0.4455 |
| 1.6800 | 10500 | 0.1264 | 0.4520 |
| 1.76 | 11000 | 0.1248 | 0.4526 |
| 1.8400 | 11500 | 0.1208 | 0.4631 |
| 1.92 | 12000 | 0.1236 | 0.4635 |
| 2.0 | 12500 | 0.1239 | 0.4573 |
| 2.08 | 13000 | 0.1209 | 0.4569 |
| 2.16 | 13500 | 0.1194 | 0.4642 |
| 2.24 | 14000 | 0.1206 | 0.4539 |
| 2.32 | 14500 | 0.117 | 0.4633 |
| 2.4 | 15000 | 0.1171 | 0.4657 |
| 2.48 | 15500 | 0.1181 | 0.4633 |
| 2.56 | 16000 | 0.1197 | 0.4552 |
| 2.64 | 16500 | 0.1182 | 0.4670 |
| 2.7200 | 17000 | 0.1155 | 0.4684 |
| 2.8 | 17500 | 0.1171 | 0.4640 |
| 2.88 | 18000 | 0.1139 | 0.4715 |
| 2.96 | 18500 | 0.1164 | 0.4769 |
| 3.0 | 18750 | - | 0.4709 |
| 3.04 | 19000 | 0.1151 | 0.4704 |
| 3.12 | 19500 | 0.1144 | 0.4759 |
| 3.2 | 20000 | 0.1121 | 0.4795 |
| 3.2800 | 20500 | 0.1104 | 0.4697 |
| 3.36 | 21000 | 0.1127 | 0.4763 |
| 3.44 | 21500 | 0.1115 | 0.4742 |
| 3.52 | 22000 | 0.1126 | 0.4697 |
| 3.6 | 22500 | 0.1123 | 0.4735 |
| 3.68 | 23000 | 0.1132 | 0.4750 |
| 3.76 | 23500 | 0.1127 | 0.4743 |
| 3.84 | 24000 | 0.1086 | 0.4752 |
| 3.92 | 24500 | 0.1107 | 0.4781 |
| 4.0 | 25000 | 0.1114 | 0.4779 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}