File size: 15,102 Bytes
ae48413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import gradio as gr
import pandas as pd
import json
import os
import matplotlib.pyplot as plt
import numpy as np
def create_benchmark_plot(df):
if df.empty:
return None
df_copy = df.copy()
score_columns = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
for col in score_columns:
df_copy[col] = pd.to_numeric(df_copy[col], errors='coerce').fillna(0)
df_copy['Total_Score'] = df_copy[score_columns].sum(axis=1)
df_sorted = df_copy.sort_values(by='Total_Score', ascending=False)
if len(df_sorted) > 10:
top_models = df_sorted.head(10)
else:
top_models = df_sorted
benchmarks = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
models = top_models['Model'].unique()
x = np.arange(len(benchmarks))
width = 0.8 / len(models) if len(models) > 0 else 0.8
fig, ax = plt.subplots(figsize=(30, 10))
all_scores = []
for i, model in enumerate(models):
model_data = top_models[top_models['Model'] == model]
scores = [model_data[benchmark].values[0] if not model_data[benchmark].empty else 0 for benchmark in benchmarks]
all_scores.extend(scores)
offset = width * i - (width * (len(models) - 1) / 2)
rects = ax.bar(x + offset, scores, width, label=model)
ax.bar_label(rects, padding=3)
ax.set_ylabel('Scores')
ax.set_xticks(x)
ax.set_xticklabels(benchmarks, rotation=45, ha="right")
ax.legend(loc='lower right')
if all_scores:
ax.set_ylim(top=max(all_scores) * 1.15)
plt.tight_layout()
return fig
def load_leaderboard_data():
data = []
benchmarks_dir = "benchmarks"
mmlu_categories = {
"mmlu_professional": [
"mmlu_professional_accounting", "mmlu_professional_law",
"mmlu_professional_medicine", "mmlu_professional_psychology"
],
"mmlu_college": [
"mmlu_college_biology", "mmlu_college_chemistry", "mmlu_college_computer_science",
"mmlu_college_mathematics", "mmlu_college_medicine", "mmlu_college_physics"
],
"mmlu_high_school": [
"mmlu_high_school_biology", "mmlu_high_school_chemistry", "mmlu_high_school_computer_science",
"mmlu_high_school_european_history", "mmlu_high_school_geography",
"mmlu_high_school_government_and_politics", "mmlu_high_school_macroeconomics",
"mmlu_high_school_mathematics", "mmlu_high_school_microeconomics",
"mmlu_high_school_physics", "mmlu_high_school_psychology",
"mmlu_high_school_statistics", "mmlu_high_school_us_history",
"mmlu_high_school_world_history"
]
}
all_mmlu_scores = [
"mmlu_abstract_algebra", "mmlu_anatomy", "mmlu_astronomy", "mmlu_business_ethics",
"mmlu_clinical_knowledge", "mmlu_college_biology", "mmlu_college_chemistry",
"mmlu_college_computer_science", "mmlu_college_mathematics", "mmlu_college_medicine",
"mmlu_college_physics", "mmlu_computer_security", "mmlu_conceptual_physics",
"mmlu_econometrics", "mmlu_electrical_engineering", "mmlu_elementary_mathematics",
"mmlu_formal_logic", "mmlu_global_facts", "mmlu_high_school_biology",
"mmlu_high_school_chemistry", "mmlu_high_school_computer_science",
"mmlu_high_school_european_history", "mmlu_high_school_geography",
"mmlu_high_school_government_and_politics", "mmlu_high_school_macroeconomics",
"mmlu_high_school_mathematics", "mmlu_high_school_microeconomics",
"mmlu_high_school_physics", "mmlu_high_school_psychology",
"mmlu_high_school_statistics", "mmlu_high_school_us_history",
"mmlu_high_school_world_history", "mmlu_human_aging", "mmlu_human_sexuality",
"mmlu_humanities", "mmlu_international_law", "mmlu_jurisprudence",
"mmlu_logical_fallacies", "mmlu_machine_learning", "mmlu_management",
"mmlu_marketing", "mmlu_medical_genetics", "mmlu_miscellaneous",
"mmlu_moral_disputes", "mmlu_moral_scenarios", "mmlu_nutrition", "mmlu_other",
"mmlu_philosophy", "mmlu_prehistory", "mmlu_professional_accounting",
"mmlu_professional_law", "mmlu_professional_medicine",
"mmlu_professional_psychology", "mmlu_public_relations", "mmlu_security_studies",
"mmlu_social_sciences", "mmlu_sociology", "mmlu_stem", "mmlu_us_foreign_policy",
"mmlu_virology", "mmlu_world_religions"
]
other_mmlu_scores = [s for s in all_mmlu_scores if s not in sum(mmlu_categories.values(), [])]
mmlu_categories["mmlu_other"] = other_mmlu_scores
for filename in os.listdir(benchmarks_dir):
if filename.endswith(".json") and filename.startswith("results_"):
filepath = os.path.join(benchmarks_dir, filename)
with open(filepath, 'r') as f:
content = json.load(f)
model_name = content.get("model_name")
if not model_name:
model_name = os.path.splitext(filename)[0]
if model_name.endswith('/'):
model_name = model_name.rstrip('/')
model_name = os.path.basename(model_name)
results = content.get("results", {})
ifeval_score = results.get("ifeval", {}).get("prompt_level_strict_acc,none")
mmlu_score = results.get("mmlu", {}).get("acc,none")
row = {"Model": model_name, "IFEval": ifeval_score, "MMLU": mmlu_score}
for score_name in all_mmlu_scores:
row[score_name] = results.get(score_name, {}).get("acc,none")
for category, scores in mmlu_categories.items():
category_scores = [pd.to_numeric(row.get(s), errors='coerce') for s in scores]
category_scores = [s for s in category_scores if pd.notna(s)]
if category_scores:
row[category] = sum(category_scores) / len(category_scores)
else:
row[category] = np.nan
data.append(row)
df_raw = pd.DataFrame(data)
numeric_cols = [col for col in df_raw.columns if col != 'Model']
for col in numeric_cols:
df_raw[col] = pd.to_numeric(df_raw[col], errors='coerce')
score_columns = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
for col in score_columns:
df_raw[col] = pd.to_numeric(df_raw[col], errors='coerce').fillna(0)
df_raw['Total_Score'] = df_raw[score_columns].sum(axis=1)
df_sorted = df_raw.sort_values(by='Total_Score', ascending=False)
df = df_sorted.drop_duplicates(subset=['Model'], keep='first').copy()
df = df.drop(columns=['Total_Score'])
for col in numeric_cols:
df[col] = df[col].apply(lambda x: round(x, 4) if pd.notna(x) else x)
df.fillna(0, inplace=True)
return df
def style_diff(df, all_data_df):
def highlight_max(s):
s_numeric = pd.to_numeric(s, errors='coerce')
max_val = s_numeric.max()
return ['background-color: #68a055' if v == max_val else '' for v in s_numeric]
def highlight_min(s):
s_numeric = pd.to_numeric(s, errors='coerce')
s_filtered = s_numeric[s_numeric > 0]
if s_filtered.empty:
return ['' for _ in s_numeric]
min_val = s_filtered.min()
return ['background-color: #d4605b' if v == min_val else '' for v in s_numeric]
df_styler = df.style
for col in df.columns:
if col != 'Model':
numeric_col = pd.to_numeric(df[col], errors='coerce')
if not numeric_col.isnull().all():
df_styler = df_styler.apply(highlight_max, subset=[col], axis=0)
df_styler = df_styler.apply(highlight_min, subset=[col], axis=0)
return df_styler
def prepare_plot_data(df, all_cols=False):
df_plot = df.copy()
if not df_plot.empty:
if all_cols:
score_columns = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
for col in score_columns:
df_plot[col] = pd.to_numeric(df_plot[col], errors='coerce').fillna(0)
df_plot['Total_Score'] = df_plot[score_columns].sum(axis=1)
df_plot = df_plot.sort_values(by='Total_Score', ascending=False).reset_index(drop=True)
df_plot = df_plot.head(10)
df_plot['Ranked_Model'] = [f"{i+1:02d}. {model}" for i, model in enumerate(df_plot['Model'])]
else:
df_plot['MMLU_IFEval_Combined'] = df_plot['MMLU'].fillna(0) + df_plot['IFEval'].fillna(0)
df_plot = df_plot.sort_values(by='MMLU_IFEval_Combined', ascending=False).reset_index(drop=True)
return df_plot
initial_df = load_leaderboard_data()
display_cols = ['Model', 'IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
display_df = initial_df[display_cols].copy()
for col in display_df.columns:
if col != 'Model':
display_df[col] = pd.to_numeric(display_df[col], errors='coerce').fillna(0)
with gr.Blocks() as demo:
gr.Markdown("# Model Leaderboard")
def update_plots(selected_models):
if not selected_models:
df_to_plot = initial_df
else:
df_to_plot = initial_df[initial_df['Model'].isin(selected_models)]
scatter_plot_df = prepare_plot_data(df_to_plot.copy(), all_cols=False)
padding_factor = 0.1
min_padding = 0.05
if not scatter_plot_df.empty:
x_min, x_max = scatter_plot_df['MMLU'].min(), scatter_plot_df['MMLU'].max()
x_range = x_max - x_min
x_padding = max(x_range * padding_factor, min_padding) if x_range > 0 else min_padding
x_lim = [x_min - x_padding, x_max + x_padding]
y_min, y_max = scatter_plot_df['IFEval'].min(), scatter_plot_df['IFEval'].max()
y_range = y_max - y_min
y_padding = max(y_range * padding_factor, min_padding) if y_range > 0 else min_padding
y_lim = [y_min - y_padding, y_max + y_padding]
else:
x_lim = [0, 1]
y_lim = [0, 1]
scatter_plot_df = pd.DataFrame(columns=['Model', 'MMLU', 'IFEval', 'MMLU_IFEval_Combined'])
scatter_plot_update = gr.ScatterPlot(
value=scatter_plot_df,
x="MMLU",
y="IFEval",
color="Model",
title="Model Performance",
x_lim=x_lim,
y_lim=y_lim,
)
bar_plot_df = prepare_plot_data(df_to_plot.copy(), all_cols=True)
if not bar_plot_df.empty:
value_vars = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
melted_df = bar_plot_df.melt(id_vars='Ranked_Model', value_vars=value_vars,
var_name='Benchmark', value_name='Score')
else:
melted_df = pd.DataFrame(columns=['Ranked_Model', 'Benchmark', 'Score'])
bar_plot_update = gr.BarPlot(
value=melted_df,
x="Score",
y="Ranked_Model",
color="Benchmark",
title="MMLU and IFEval Scores by Model",
x_title="Score",
y_title="Model",
color_legend_title="Benchmark",
vertical=False,
)
benchmark_plot_update = create_benchmark_plot(df_to_plot)
if not selected_models:
df_to_display = display_df
styled_df = style_diff(df_to_display, initial_df)
else:
df_to_display = display_df[display_df['Model'].isin(selected_models)]
styled_df = style_diff(df_to_display, initial_df)
return scatter_plot_update, bar_plot_update, benchmark_plot_update, styled_df
with gr.Accordion("Plots", open=True):
with gr.Tabs():
with gr.TabItem("Summary Plots"):
with gr.Row():
scatter_plot_df = prepare_plot_data(initial_df.copy(), all_cols=False)
padding_factor = 0.1
min_padding = 0.05
x_min, x_max = scatter_plot_df['MMLU'].min(), scatter_plot_df['MMLU'].max()
x_range = x_max - x_min
x_padding = max(x_range * padding_factor, min_padding)
x_lim = [x_min - x_padding, x_max + x_padding]
y_min, y_max = scatter_plot_df['IFEval'].min(), scatter_plot_df['IFEval'].max()
y_range = y_max - y_min
y_padding = max(y_range * padding_factor, min_padding)
y_lim = [y_min - y_padding, y_max + y_padding]
scatterplot = gr.ScatterPlot(
value=scatter_plot_df,
x="MMLU",
y="IFEval",
color="Model",
title="Model Performance",
x_lim=x_lim,
y_lim=y_lim,
)
bar_plot_df = prepare_plot_data(initial_df.copy(), all_cols=True)
value_vars = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
melted_df = bar_plot_df.melt(id_vars='Ranked_Model', value_vars=value_vars,
var_name='Benchmark', value_name='Score')
barplot = gr.BarPlot(
value=melted_df,
x="Score",
y="Ranked_Model",
color="Benchmark",
title="MMLU and IFEval Scores by Model",
x_title="Score",
y_title="Model",
color_legend_title="Benchmark",
vertical=False,
)
with gr.TabItem("Benchmark Comparison"):
with gr.Row():
benchmark_plot = gr.Plot(value=create_benchmark_plot(initial_df))
model_names = initial_df["Model"].tolist()
model_selector = gr.Dropdown(
choices=model_names,
label="Select Models to Display",
multiselect=True,
info="Select one or more models to display on the plots. If none are selected, all models will be shown."
)
with gr.Row():
dataframe = gr.DataFrame(
value=style_diff(display_df, initial_df),
type="pandas",
column_widths=["30%", "10%", "10%", "12%", "10%", "10%", "10%"],
wrap=True
)
model_selector.change(update_plots, inputs=model_selector, outputs=[scatterplot, barplot, benchmark_plot, dataframe])
if __name__ == "__main__":
demo.launch()
|