File size: 15,102 Bytes
ae48413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import gradio as gr
import pandas as pd
import json
import os
import matplotlib.pyplot as plt
import numpy as np

def create_benchmark_plot(df):
    if df.empty:
        return None

    df_copy = df.copy()
    score_columns = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
    
    for col in score_columns:
        df_copy[col] = pd.to_numeric(df_copy[col], errors='coerce').fillna(0)
    
    df_copy['Total_Score'] = df_copy[score_columns].sum(axis=1)
    
    df_sorted = df_copy.sort_values(by='Total_Score', ascending=False)
    
    if len(df_sorted) > 10:
        top_models = df_sorted.head(10)
    else:
        top_models = df_sorted
    
    benchmarks = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
    models = top_models['Model'].unique()
    
    x = np.arange(len(benchmarks))
    width = 0.8 / len(models) if len(models) > 0 else 0.8
    
    fig, ax = plt.subplots(figsize=(30, 10))
    
    all_scores = []
    for i, model in enumerate(models):
        model_data = top_models[top_models['Model'] == model]
        scores = [model_data[benchmark].values[0] if not model_data[benchmark].empty else 0 for benchmark in benchmarks]
        all_scores.extend(scores)
        offset = width * i - (width * (len(models) - 1) / 2)
        rects = ax.bar(x + offset, scores, width, label=model)
        ax.bar_label(rects, padding=3)

    ax.set_ylabel('Scores')
    ax.set_xticks(x)
    ax.set_xticklabels(benchmarks, rotation=45, ha="right")
    ax.legend(loc='lower right')
    
    if all_scores:
        ax.set_ylim(top=max(all_scores) * 1.15)

    plt.tight_layout()
    
    return fig

def load_leaderboard_data():
    data = []
    benchmarks_dir = "benchmarks"
    
    mmlu_categories = {
        "mmlu_professional": [
            "mmlu_professional_accounting", "mmlu_professional_law", 
            "mmlu_professional_medicine", "mmlu_professional_psychology"
        ],
        "mmlu_college": [
            "mmlu_college_biology", "mmlu_college_chemistry", "mmlu_college_computer_science",
            "mmlu_college_mathematics", "mmlu_college_medicine", "mmlu_college_physics"
        ],
        "mmlu_high_school": [
            "mmlu_high_school_biology", "mmlu_high_school_chemistry", "mmlu_high_school_computer_science",
            "mmlu_high_school_european_history", "mmlu_high_school_geography",
            "mmlu_high_school_government_and_politics", "mmlu_high_school_macroeconomics",
            "mmlu_high_school_mathematics", "mmlu_high_school_microeconomics",
            "mmlu_high_school_physics", "mmlu_high_school_psychology",
            "mmlu_high_school_statistics", "mmlu_high_school_us_history",
            "mmlu_high_school_world_history"
        ]
    }
    
    all_mmlu_scores = [
        "mmlu_abstract_algebra", "mmlu_anatomy", "mmlu_astronomy", "mmlu_business_ethics",
        "mmlu_clinical_knowledge", "mmlu_college_biology", "mmlu_college_chemistry",
        "mmlu_college_computer_science", "mmlu_college_mathematics", "mmlu_college_medicine",
        "mmlu_college_physics", "mmlu_computer_security", "mmlu_conceptual_physics",
        "mmlu_econometrics", "mmlu_electrical_engineering", "mmlu_elementary_mathematics",
        "mmlu_formal_logic", "mmlu_global_facts", "mmlu_high_school_biology",
        "mmlu_high_school_chemistry", "mmlu_high_school_computer_science",
        "mmlu_high_school_european_history", "mmlu_high_school_geography",
        "mmlu_high_school_government_and_politics", "mmlu_high_school_macroeconomics",
        "mmlu_high_school_mathematics", "mmlu_high_school_microeconomics",
        "mmlu_high_school_physics", "mmlu_high_school_psychology",
        "mmlu_high_school_statistics", "mmlu_high_school_us_history",
        "mmlu_high_school_world_history", "mmlu_human_aging", "mmlu_human_sexuality",
        "mmlu_humanities", "mmlu_international_law", "mmlu_jurisprudence",
        "mmlu_logical_fallacies", "mmlu_machine_learning", "mmlu_management",
        "mmlu_marketing", "mmlu_medical_genetics", "mmlu_miscellaneous",
        "mmlu_moral_disputes", "mmlu_moral_scenarios", "mmlu_nutrition", "mmlu_other",
        "mmlu_philosophy", "mmlu_prehistory", "mmlu_professional_accounting",
        "mmlu_professional_law", "mmlu_professional_medicine",
        "mmlu_professional_psychology", "mmlu_public_relations", "mmlu_security_studies",
        "mmlu_social_sciences", "mmlu_sociology", "mmlu_stem", "mmlu_us_foreign_policy",
        "mmlu_virology", "mmlu_world_religions"
    ]

    other_mmlu_scores = [s for s in all_mmlu_scores if s not in sum(mmlu_categories.values(), [])]
    mmlu_categories["mmlu_other"] = other_mmlu_scores

    for filename in os.listdir(benchmarks_dir):
        if filename.endswith(".json") and filename.startswith("results_"):
            filepath = os.path.join(benchmarks_dir, filename)
            with open(filepath, 'r') as f:
                content = json.load(f)
                
                model_name = content.get("model_name")
                if not model_name:
                    model_name = os.path.splitext(filename)[0]
                
                if model_name.endswith('/'):
                    model_name = model_name.rstrip('/')

                model_name = os.path.basename(model_name)
                
                results = content.get("results", {})
                ifeval_score = results.get("ifeval", {}).get("prompt_level_strict_acc,none")
                mmlu_score = results.get("mmlu", {}).get("acc,none")

                row = {"Model": model_name, "IFEval": ifeval_score, "MMLU": mmlu_score}

                for score_name in all_mmlu_scores:
                    row[score_name] = results.get(score_name, {}).get("acc,none")

                for category, scores in mmlu_categories.items():
                    category_scores = [pd.to_numeric(row.get(s), errors='coerce') for s in scores]
                    category_scores = [s for s in category_scores if pd.notna(s)]
                    if category_scores:
                        row[category] = sum(category_scores) / len(category_scores)
                    else:
                        row[category] = np.nan
                
                data.append(row)
    
    df_raw = pd.DataFrame(data)
    
    numeric_cols = [col for col in df_raw.columns if col != 'Model']
    for col in numeric_cols:
        df_raw[col] = pd.to_numeric(df_raw[col], errors='coerce')

    score_columns = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
    for col in score_columns:
        df_raw[col] = pd.to_numeric(df_raw[col], errors='coerce').fillna(0)
    
    df_raw['Total_Score'] = df_raw[score_columns].sum(axis=1)

    df_sorted = df_raw.sort_values(by='Total_Score', ascending=False)
    
    df = df_sorted.drop_duplicates(subset=['Model'], keep='first').copy()
    
    df = df.drop(columns=['Total_Score'])

    for col in numeric_cols:
        df[col] = df[col].apply(lambda x: round(x, 4) if pd.notna(x) else x)

    df.fillna(0, inplace=True)
    
    return df

def style_diff(df, all_data_df):
    def highlight_max(s):
        s_numeric = pd.to_numeric(s, errors='coerce')
        max_val = s_numeric.max()
        return ['background-color: #68a055' if v == max_val else '' for v in s_numeric]

    def highlight_min(s):
        s_numeric = pd.to_numeric(s, errors='coerce')
        s_filtered = s_numeric[s_numeric > 0]
        if s_filtered.empty:
            return ['' for _ in s_numeric]
        min_val = s_filtered.min()
        return ['background-color: #d4605b' if v == min_val else '' for v in s_numeric]

    df_styler = df.style
    for col in df.columns:
        if col != 'Model':
            numeric_col = pd.to_numeric(df[col], errors='coerce')
            if not numeric_col.isnull().all():
                df_styler = df_styler.apply(highlight_max, subset=[col], axis=0)
                df_styler = df_styler.apply(highlight_min, subset=[col], axis=0)
    return df_styler

def prepare_plot_data(df, all_cols=False):
    df_plot = df.copy()
    
    if not df_plot.empty:
        if all_cols:
            score_columns = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
            for col in score_columns:
                df_plot[col] = pd.to_numeric(df_plot[col], errors='coerce').fillna(0)
            df_plot['Total_Score'] = df_plot[score_columns].sum(axis=1)
            df_plot = df_plot.sort_values(by='Total_Score', ascending=False).reset_index(drop=True)
            df_plot = df_plot.head(10)
            df_plot['Ranked_Model'] = [f"{i+1:02d}. {model}" for i, model in enumerate(df_plot['Model'])]
        else:
            df_plot['MMLU_IFEval_Combined'] = df_plot['MMLU'].fillna(0) + df_plot['IFEval'].fillna(0)
            df_plot = df_plot.sort_values(by='MMLU_IFEval_Combined', ascending=False).reset_index(drop=True)
    
    return df_plot

initial_df = load_leaderboard_data()
display_cols = ['Model', 'IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
display_df = initial_df[display_cols].copy()
for col in display_df.columns:
    if col != 'Model':
        display_df[col] = pd.to_numeric(display_df[col], errors='coerce').fillna(0)

with gr.Blocks() as demo:
    gr.Markdown("# Model Leaderboard")

    def update_plots(selected_models):
        if not selected_models:
            df_to_plot = initial_df
        else:
            df_to_plot = initial_df[initial_df['Model'].isin(selected_models)]

        scatter_plot_df = prepare_plot_data(df_to_plot.copy(), all_cols=False)
        
        padding_factor = 0.1
        min_padding = 0.05

        if not scatter_plot_df.empty:
            x_min, x_max = scatter_plot_df['MMLU'].min(), scatter_plot_df['MMLU'].max()
            x_range = x_max - x_min
            x_padding = max(x_range * padding_factor, min_padding) if x_range > 0 else min_padding
            x_lim = [x_min - x_padding, x_max + x_padding]

            y_min, y_max = scatter_plot_df['IFEval'].min(), scatter_plot_df['IFEval'].max()
            y_range = y_max - y_min
            y_padding = max(y_range * padding_factor, min_padding) if y_range > 0 else min_padding
            y_lim = [y_min - y_padding, y_max + y_padding]
        else:
            x_lim = [0, 1]
            y_lim = [0, 1]
            scatter_plot_df = pd.DataFrame(columns=['Model', 'MMLU', 'IFEval', 'MMLU_IFEval_Combined'])

        scatter_plot_update = gr.ScatterPlot(
            value=scatter_plot_df,
            x="MMLU",
            y="IFEval",
            color="Model",
            title="Model Performance",
            x_lim=x_lim,
            y_lim=y_lim,
        )

        bar_plot_df = prepare_plot_data(df_to_plot.copy(), all_cols=True)
        
        if not bar_plot_df.empty:
            value_vars = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
            melted_df = bar_plot_df.melt(id_vars='Ranked_Model', value_vars=value_vars,
                                         var_name='Benchmark', value_name='Score')
        else:
            melted_df = pd.DataFrame(columns=['Ranked_Model', 'Benchmark', 'Score'])

        bar_plot_update = gr.BarPlot(
            value=melted_df,
            x="Score",
            y="Ranked_Model",
            color="Benchmark",
            title="MMLU and IFEval Scores by Model",
            x_title="Score",
            y_title="Model",
            color_legend_title="Benchmark",
            vertical=False,
        )
        
        benchmark_plot_update = create_benchmark_plot(df_to_plot)

        if not selected_models:
            df_to_display = display_df
            styled_df = style_diff(df_to_display, initial_df)
        else:
            df_to_display = display_df[display_df['Model'].isin(selected_models)]
            styled_df = style_diff(df_to_display, initial_df)
        
        return scatter_plot_update, bar_plot_update, benchmark_plot_update, styled_df

    with gr.Accordion("Plots", open=True):
        with gr.Tabs():
            with gr.TabItem("Summary Plots"):
                with gr.Row():
                    scatter_plot_df = prepare_plot_data(initial_df.copy(), all_cols=False)
                    
                    padding_factor = 0.1
                    min_padding = 0.05

                    x_min, x_max = scatter_plot_df['MMLU'].min(), scatter_plot_df['MMLU'].max()
                    x_range = x_max - x_min
                    x_padding = max(x_range * padding_factor, min_padding)
                    x_lim = [x_min - x_padding, x_max + x_padding]

                    y_min, y_max = scatter_plot_df['IFEval'].min(), scatter_plot_df['IFEval'].max()
                    y_range = y_max - y_min
                    y_padding = max(y_range * padding_factor, min_padding)
                    y_lim = [y_min - y_padding, y_max + y_padding]

                    scatterplot = gr.ScatterPlot(
                        value=scatter_plot_df,
                        x="MMLU",
                        y="IFEval",
                        color="Model",
                        title="Model Performance",
                        x_lim=x_lim,
                        y_lim=y_lim,
                    )

                    bar_plot_df = prepare_plot_data(initial_df.copy(), all_cols=True)
                    value_vars = ['IFEval', 'MMLU', 'mmlu_professional', 'mmlu_college', 'mmlu_high_school', 'mmlu_other']
                    melted_df = bar_plot_df.melt(id_vars='Ranked_Model', value_vars=value_vars,
                                                 var_name='Benchmark', value_name='Score')

                    barplot = gr.BarPlot(
                        value=melted_df,
                        x="Score",
                        y="Ranked_Model",
                        color="Benchmark",
                        title="MMLU and IFEval Scores by Model",
                        x_title="Score",
                        y_title="Model",
                        color_legend_title="Benchmark",
                        vertical=False,
                    )
            with gr.TabItem("Benchmark Comparison"):
                with gr.Row():
                    benchmark_plot = gr.Plot(value=create_benchmark_plot(initial_df))

    model_names = initial_df["Model"].tolist()
    model_selector = gr.Dropdown(
        choices=model_names,
        label="Select Models to Display",
        multiselect=True,
        info="Select one or more models to display on the plots. If none are selected, all models will be shown."
    )

    with gr.Row():
        dataframe = gr.DataFrame(
            value=style_diff(display_df, initial_df),
            type="pandas",
            column_widths=["30%", "10%", "10%", "12%", "10%", "10%", "10%"],
            wrap=True
        )
    
    model_selector.change(update_plots, inputs=model_selector, outputs=[scatterplot, barplot, benchmark_plot, dataframe])

if __name__ == "__main__":
    demo.launch()