metadata_root: "./synthesize_audio/dataset_root.json" log_directory: "./log/latent_diffusion" project: "audioldm" precision: "high" variables: sampling_rate: &sampling_rate 16000 mel_bins: &mel_bins 64 latent_embed_dim: &latent_embed_dim 8 latent_t_size: &latent_t_size 256 # TODO might need to change latent_f_size: &latent_f_size 16 in_channels: &unet_in_channels 8 optimize_ddpm_parameter: &optimize_ddpm_parameter true optimize_gpt: &optimize_gpt true warmup_steps: &warmup_steps 2000 data: train: [ "synthesize_audio" ] test: "synthesize_audio" val: "synthesize_audio" class_label_indices: "synthesize_audio" dataloader_add_ons: [] step: validation_every_n_epochs: 5 save_checkpoint_every_n_steps: 5000 # limit_val_batches: 2 max_steps: 800000 save_top_k: 1 preprocessing: audio: sampling_rate: *sampling_rate max_wav_value: 32768.0 duration: 10.24 stft: filter_length: 1024 hop_length: 160 win_length: 1024 mel: n_mel_channels: *mel_bins mel_fmin: 0 mel_fmax: 8000 augmentation: mixup: 0.0 model: target: audioldm_train.modules.latent_diffusion.ddpm.LatentDiffusion params: # Autoencoder first_stage_config: base_learning_rate: 8.0e-06 target: audioldm_train.modules.latent_encoder.autoencoder.AutoencoderKL params: reload_from_ckpt: "data/checkpoints/vae_mel_16k_64bins.ckpt" sampling_rate: *sampling_rate batchsize: 4 monitor: val/rec_loss image_key: fbank subband: 1 embed_dim: *latent_embed_dim time_shuffle: 1 lossconfig: target: audioldm_train.losses.LPIPSWithDiscriminator params: disc_start: 50001 kl_weight: 1000.0 disc_weight: 0.5 disc_in_channels: 1 ddconfig: double_z: true mel_bins: *mel_bins # The frequency bins of mel spectrogram z_channels: 8 resolution: 256 downsample_time: false in_channels: 1 out_ch: 1 ch: 128 ch_mult: - 1 - 2 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 # Other parameters base_learning_rate: 1.0e-4 warmup_steps: *warmup_steps optimize_ddpm_parameter: *optimize_ddpm_parameter sampling_rate: *sampling_rate batchsize: 2 linear_start: 0.0015 linear_end: 0.0195 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 unconditional_prob_cfg: 0.1 parameterization: eps # [eps, x0, v] first_stage_key: fbank latent_t_size: *latent_t_size # TODO might need to change latent_f_size: *latent_f_size channels: *latent_embed_dim # TODO might need to change monitor: val/loss_simple_ema scale_by_std: true unet_config: target: audioldm_train.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 64 extra_film_condition_dim: 512 # If you use film as extra condition, set this parameter. For example if you have two conditioning vectors each have dimension 512, then this number would be 1024 # context_dim: # - 768 in_channels: *unet_in_channels # The input channel of the UNet model out_channels: *latent_embed_dim # TODO might need to change model_channels: 192 # TODO might need to change attention_resolutions: - 8 - 4 - 2 num_res_blocks: 2 channel_mult: - 1 - 2 - 3 - 5 num_head_channels: 32 use_spatial_transformer: true transformer_depth: 1 extra_sa_layer: False cond_stage_config: film_clap_cond1: cond_stage_key: text conditioning_key: film target: audioldm_train.conditional_models.CLAPAudioEmbeddingClassifierFreev2 params: pretrained_path: data/checkpoints/clap_music_speech_audioset_epoch_15_esc_89.98.pt sampling_rate: 16000 embed_mode: text # or text amodel: HTSAT-base evaluation_params: unconditional_guidance_scale: 3.5 ddim_sampling_steps: 200 n_candidates_per_samples: 3