Novaciano commited on
Commit
6f09cc6
·
verified ·
1 Parent(s): b319364

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -37
README.md CHANGED
@@ -2,7 +2,9 @@
2
  license: llama3.2
3
  language:
4
  - en
5
- base_model: prithivMLmods/Bellatrix-Tiny-1B-R1
 
 
6
  pipeline_tag: text-generation
7
  library_name: transformers
8
  tags:
@@ -10,50 +12,62 @@ tags:
10
  - Reinforcement learning
11
  - trl
12
  - SFT
13
- - llama-cpp
14
- - gguf-my-repo
 
 
 
 
 
 
 
 
15
  ---
 
16
 
17
- # Novaciano/Bellatrix-Tiny-1B-R1-IQ4_XS-GGUF
18
- This model was converted to GGUF format from [`prithivMLmods/Bellatrix-Tiny-1B-R1`](https://huggingface.co/prithivMLmods/Bellatrix-Tiny-1B-R1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
- Refer to the [original model card](https://huggingface.co/prithivMLmods/Bellatrix-Tiny-1B-R1) for more details on the model.
20
 
21
- ## Use with llama.cpp
22
- Install llama.cpp through brew (works on Mac and Linux)
23
 
24
- ```bash
25
- brew install llama.cpp
26
 
27
- ```
28
- Invoke the llama.cpp server or the CLI.
29
 
30
- ### CLI:
31
- ```bash
32
- llama-cli --hf-repo Novaciano/Bellatrix-Tiny-1B-R1-IQ4_XS-GGUF --hf-file bellatrix-tiny-1b-r1-iq4_xs-imat.gguf -p "The meaning to life and the universe is"
33
- ```
34
 
35
- ### Server:
36
- ```bash
37
- llama-server --hf-repo Novaciano/Bellatrix-Tiny-1B-R1-IQ4_XS-GGUF --hf-file bellatrix-tiny-1b-r1-iq4_xs-imat.gguf -c 2048
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  ```
39
 
40
- Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
41
 
42
- Step 1: Clone llama.cpp from GitHub.
43
- ```
44
- git clone https://github.com/ggerganov/llama.cpp
45
- ```
 
 
46
 
47
- Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
48
- ```
49
- cd llama.cpp && LLAMA_CURL=1 make
50
- ```
51
-
52
- Step 3: Run inference through the main binary.
53
- ```
54
- ./llama-cli --hf-repo Novaciano/Bellatrix-Tiny-1B-R1-IQ4_XS-GGUF --hf-file bellatrix-tiny-1b-r1-iq4_xs-imat.gguf -p "The meaning to life and the universe is"
55
- ```
56
- or
57
- ```
58
- ./llama-server --hf-repo Novaciano/Bellatrix-Tiny-1B-R1-IQ4_XS-GGUF --hf-file bellatrix-tiny-1b-r1-iq4_xs-imat.gguf -c 2048
59
- ```
 
2
  license: llama3.2
3
  language:
4
  - en
5
+ - es
6
+ base_model:
7
+ - meta-llama/Llama-3.2-1B-Instruct
8
  pipeline_tag: text-generation
9
  library_name: transformers
10
  tags:
 
12
  - Reinforcement learning
13
  - trl
14
  - SFT
15
+ - uncensored
16
+ - nsfw
17
+ - 1b
18
+ - 4-bit
19
+ - llama 3.2
20
+ - español
21
+ - koboldcpp
22
+ - not-for-all-audiences
23
+ datasets:
24
+ - openerotica/erotiquant3
25
  ---
26
+ # Bellatrix Erotiquant3 1B R1
27
 
28
+ Bellatrix is based on a reasoning-based model designed for the DeepSeek-R1 synthetic dataset entries and combined with the dataset Erotiquant3 of Openerotica. The pipeline's instruction-tuned, text-only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. These models outperform many of the available open-source options. Bellatrix is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions utilize supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF).
 
 
29
 
30
+ # **Use with transformers**
 
31
 
32
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
 
33
 
34
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
 
35
 
36
+ ```python
37
+ import torch
38
+ from transformers import pipeline
 
39
 
40
+ model_id = "prithivMLmods/Bellatrix-Tiny-1B-R1"
41
+ pipe = pipeline(
42
+ "text-generation",
43
+ model=model_id,
44
+ torch_dtype=torch.bfloat16,
45
+ device_map="auto",
46
+ )
47
+ messages = [
48
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
49
+ {"role": "user", "content": "Who are you?"},
50
+ ]
51
+ outputs = pipe(
52
+ messages,
53
+ max_new_tokens=256,
54
+ )
55
+ print(outputs[0]["generated_text"][-1])
56
  ```
57
 
58
+ Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
59
 
60
+ # **Intended Use**
61
+ Bellatrix is designed for applications that require advanced reasoning and multilingual dialogue capabilities. It is particularly suitable for:
62
+ - **Agentic Retrieval**: Enabling intelligent retrieval of relevant information in a dialogue or query-response system.
63
+ - **Summarization Tasks**: Condensing large bodies of text into concise summaries for easier comprehension.
64
+ - **Multilingual Use Cases**: Supporting conversations in multiple languages with high accuracy and coherence.
65
+ - **Instruction-Based Applications**: Following complex, context-aware instructions to generate precise outputs in a variety of scenarios.
66
 
67
+ # **Limitations**
68
+ Despite its capabilities, Bellatrix has some limitations:
69
+ 1. **Domain Specificity**: While it performs well on general tasks, its performance may degrade with highly specialized or niche datasets.
70
+ 2. **Dependence on Training Data**: It is only as good as the quality and diversity of its training data, which may lead to biases or inaccuracies.
71
+ 3. **Computational Resources**: The model’s optimized transformer architecture can be resource-intensive, requiring significant computational power for fine-tuning and inference.
72
+ 4. **Language Coverage**: While multilingual, some languages or dialects may have limited support or lower performance compared to widely used ones.
73
+ 5. **Real-World Contexts**: It may struggle with understanding nuanced or ambiguous real-world scenarios not covered during training.