File size: 9,560 Bytes
460cdf1 02c01e3 460cdf1 f84fa4b 460cdf1 f8505ad 460cdf1 c77ba93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
---
license: apache-2.0
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
library_name: transformers
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
---
# <img src="assets/OctoMed.svg" alt="OctoMed Logo" width="100" style="vertical-align:bottom; margin-right:0px;" /> OctoMed-7B
## Introduction
OctoMed-7B is a high-performance multimodal medical reasoning model created through large-scale data curation and supervised fine-tuning (SFT). To support reliable clinical reasoning, we developed a scalable data pipeline that distills structured reasoning traces from DeepSeek-R1 and GPT-4o and produced the largest multimodal medical reasoning dataset to date with more than 8 million traces and 6.8 billion response tokens.
Using Qwen2.5-VL-7B-Instruct as the base model, OctoMed-7B is trained on this curated corpus and achieves strong, robust performance on a wide range of out-of-distribution medical benchmarks.
OctoMed-7B produces internal reasoning traces in \<think>...\</think> tokens before writing out its final answer. In general, the model has a tendency to think longer for harder or ill-defined questions, while sticking to shorter reasoning traces for easier queries.
## Evaluation
### Medical Benchmark Performances
<p align="center">
<img src="assets/performances.svg" alt="Medical Benchmark Performances" width="100%" />
</p>
**Notes:**
- Green = OSS smaller models (<10B), Cyan = large proprietary models.
- † = 10-sample majority vote ensemble result.
### Legacy Medical Benchmark Performance
| Dataset | Setting | Performance |
|----------|---------|--------------|
| VQA-RAD | Open (Token F1) | 64.23 |
| VQA-RAD | Closed (Accuracy) | 85.66 |
| SLAKE | Open (Token F1) | 84.96 |
| SLAKE | Closed (Accuracy) | 89.66 |
We also train on the train splits of the VQA-RAD and SLAKE datasets and report the performances here. For these results, we apply a **direct** prompt by including the phrase **Answer in a short word or phrase.** at the end of each sample. GPT2 is used as the tokenizer to compute Token F1 for open-ended questions following prior work.
## Requirements
We recommend installing the transformers version used in our experiments and other dependencies with this command:
```
pip install transformers==4.57.1 accelerate==1.12.0 torchvision==0.24.1 qwen-vl-utils==0.0.14
```
## Quickstart
Below, we provide a some examples to show how to use OctoMed-7B with 🤗 Transformers or vLLM.
<details>
<summary>Inference with HF Transformers 🤗</summary>
Here we show a code snippet to show you how chat with OctoMed-7B using `transformers` and `qwen_vl_utils`:
```python
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"OctoMed/OctoMed-7B", dtype=torch.bfloat16, device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# "OctoMed/OctoMed-7B",
# dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# The default range for the number of visual tokens per image in the model is 4-16384.
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
min_pixels = 262144
max_pixels = 262144
processor = AutoProcessor.from_pretrained("OctoMed/OctoMed-7B", min_pixels=min_pixels, max_pixels=max_pixels)
# Text-Only Query
# messages = [
# {
# "role": "user",
# "content": [
# {"type": "text", "text": "I've had a persistent dry cough for two weeks but no fever. Could this be allergies, and when should I see a doctor?"},
# ],
# }
# ]
# General Query
# messages = [
# {
# "role": "user",
# "content": [
# {
# "type": "image",
# "image": "https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51b2/10835941/13323b55fbb5/13256_2024_4349_Fig1_HTML.jpg",
# },
# {"type": "text", "text": "Describe this image."},
# ],
# }
# ]
# Multiple Choice Query
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51b2/10835941/13323b55fbb5/13256_2024_4349_Fig1_HTML.jpg",
},
{"type": "text", "text": "What orientation was the MRI in image B taken in?\nA. Axial\nB. Coronal\nC. Sagittal\nD. Oblique\n\nPlease reason step-by-step, and put your final answer within \\boxed{}."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(device="cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=8192)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
</details>
<details>
<summary>Inference with vLLM</summary>
Here we show an example of how to use OctoMed with vLLM (tested with vLLM==0.11.2 and transformers==4.57.1):
```python
from vllm import LLM, SamplingParams
from transformers import AutoProcessor
min_pixels = 262144
max_pixels = 262144
processor = AutoProcessor.from_pretrained("OctoMed/OctoMed-7B", min_pixels=min_pixels, max_pixels=max_pixels)
llm = LLM(
model="OctoMed/OctoMed-7B",
trust_remote_code=True,
dtype="bfloat16",
max_model_len=8192,
tensor_parallel_size=4,
gpu_memory_utilization=0.8,
limit_mm_per_prompt={"image": 1}
)
# Set up sampling parameters
sampling_params = SamplingParams(
temperature=0.6,
top_p=0.95,
max_tokens=8192,
)
image_data = []
# Text-Only Query
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Explain the difference between type 1 and type 2 diabetes."},
],
}
]
# General Query
# image_data = ['https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51b2/10835941/13323b55fbb5/13256_2024_4349_Fig1_HTML.jpg']
# messages = [
# {
# "role": "user",
# "content": [
# {
# "type": "image",
# "image": image_data[0],
# },
# {"type": "text", "text": "Describe this image."},
# ],
# }
# ]
# Multiple Choice Query
# image_data = ['https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51b2/10835941/13323b55fbb5/13256_2024_4349_Fig1_HTML.jpg']
# messages = [
# {
# "role": "user",
# "content": [
# {
# "type": "image",
# "image": image_data[0],
# },
# {"type": "text", "text": "What orientation was the MRI in image B taken in?\nA. Axial\nB. Coronal\nC. Sagittal\nD. Oblique\n\nPlease reason step-by-step, and put your final answer within \\boxed{}."},
# ],
# }
# ]
prompt = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
if image_data:
mm_prompt = {
"prompt": prompt,
"multi_modal_data": {"image": image_data}
}
else:
mm_prompt = {"prompt": prompt}
# Generate response
outputs = llm.generate([mm_prompt], sampling_params)
# Print the generated response
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt}")
print(f"Generated text: {generated_text}")
print("-" * 50)
```
</details>
### Suggested Hyperparameters
We suggest using the same settings used in evaluation to reproduce results:
Format multiple choice questions with the following template:
```
{optional image(s)}
{question}
{options, 1 on each line}
Please reason step-by-step, and put your final answer within \\boxed{}.
```
Example Prompt:
```
{image(s)}
What orientation was the MRI in image B taken in?
A: Axial
B: Coronal
C: Sagittal
D: Oblique
Please reason step-by-step, and put your final answer within \\boxed{}.
```
- Use the default system prompt ("You are a helpful assistant.")
- Extract the answer by looking at the content within the last \\boxed{}.
- Temperature of 0.6
- Top-p of 0.95
- min_pixels = 262144
- max_pixels = 262144
### Known Issues
* Model is sensitive to system prompt. We recommend using the default one.
* The model is finetuned for multiple-choice VQA. The model may follow instructions for other tasks but is not extensively tested or post-trained to do so.
We hope to address these concerns moving forward in future iterations!
## Citation
If you find our work helpful, feel free to give us a cite.
```
@article{ossowski2025octomed,
title={OctoMed: Data Recipes for State-of-the-Art Multimodal Medical Reasoning},
author={Ossowski, Timothy and Zhang, Sheng and Liu, Qianchu and Qin, Guanghui and Tan, Reuben and Naumann, Tristan and Hu, Junjie and Poon, Hoifung},
journal={arXiv preprint arXiv:2511.23269},
year={2025}
}
``` |