--- license: cc-by-nc-4.0 language: - ro base_model: - google/gemma-7b datasets: - OpenLLM-Ro/ro_sft_alpaca - OpenLLM-Ro/ro_sft_alpaca_gpt4 - OpenLLM-Ro/ro_sft_dolly - OpenLLM-Ro/ro_sft_selfinstruct_gpt4 - OpenLLM-Ro/ro_sft_norobots - OpenLLM-Ro/ro_sft_orca - OpenLLM-Ro/ro_sft_camel - OpenLLM-Ro/ro_sft_oasst - OpenLLM-Ro/ro_sft_ultrachat - OpenLLM-Ro/ro_sft_magpie_mt - OpenLLM-Ro/ro_sft_magpie_reasoning model-index: - name: OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23 results: - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: Score type: Score value: 6.28 - task: type: text-generation dataset: name: RoCulturaBench type: RoCulturaBench metrics: - name: Score type: Score value: 3.65 - task: type: text-generation dataset: name: Romanian_Academic_Benchmarks type: Romanian_Academic_Benchmarks metrics: - name: Average accuracy type: accuracy value: 50.52 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: Average accuracy type: accuracy value: 47.70 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: Average accuracy type: accuracy value: 51.66 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: Average accuracy type: accuracy value: 66.32 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: Average accuracy type: accuracy value: 53.59 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: Average accuracy type: accuracy value: 36.04 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_truthfulqa type: OpenLLM-Ro/ro_truthfulqa metrics: - name: Average accuracy type: accuracy value: 47.81 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: Average macro-f1 type: macro-f1 value: 95.44 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: Average macro-f1 type: macro-f1 value: 59.24 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: Average bleu type: bleu value: 25.17 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: Average bleu type: bleu value: 21.17 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average exact_match type: exact_match value: 15.88 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average f1 type: f1 value: 29.16 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average spearman type: spearman value: 75.90 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average pearson type: pearson value: 75.16 - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: First turn type: Score value: 6.97 - name: Second turn type: Score value: 5.58 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: 0-shot type: accuracy value: 46.19 - name: 1-shot type: accuracy value: 46.53 - name: 3-shot type: accuracy value: 46.02 - name: 5-shot type: accuracy value: 48.33 - name: 10-shot type: accuracy value: 49.27 - name: 25-shot type: accuracy value: 49.87 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: 0-shot type: accuracy value: 51.13 - name: 1-shot type: accuracy value: 50.94 - name: 3-shot type: accuracy value: 52.67 - name: 5-shot type: accuracy value: 51.90 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: 0-shot type: accuracy value: 67.40 - name: 1-shot type: accuracy value: 65.04 - name: 3-shot type: accuracy value: 65.67 - name: 5-shot type: accuracy value: 67.17 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: 0-shot type: accuracy value: 58.03 - name: 1-shot type: accuracy value: 56.63 - name: 3-shot type: accuracy value: 52.47 - name: 5-shot type: accuracy value: 48.63 - name: 10-shot type: accuracy value: 52.18 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: 1-shot type: accuracy value: 24.11 - name: 3-shot type: accuracy value: 37.76 - name: 5-shot type: accuracy value: 46.25 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: 0-shot type: macro-f1 value: 96.33 - name: 1-shot type: macro-f1 value: 94.62 - name: 3-shot type: macro-f1 value: 95.06 - name: 5-shot type: macro-f1 value: 95.76 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: 0-shot type: macro-f1 value: 43.65 - name: 1-shot type: macro-f1 value: 64.30 - name: 3-shot type: macro-f1 value: 64.22 - name: 5-shot type: macro-f1 value: 64.81 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: 0-shot type: bleu value: 13.30 - name: 1-shot type: bleu value: 28.59 - name: 3-shot type: bleu value: 29.48 - name: 5-shot type: bleu value: 29.31 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: 0-shot type: bleu value: 1.11 - name: 1-shot type: bleu value: 18.97 - name: 3-shot type: bleu value: 31.99 - name: 5-shot type: bleu value: 32.60 - task: type: text-generation dataset: name: XQuAD_EM type: XQuAD_EM metrics: - name: 0-shot type: exact_match value: 17.31 - name: 1-shot type: exact_match value: 12.44 - name: 3-shot type: exact_match value: 13.11 - name: 5-shot type: exact_match value: 20.67 - task: type: text-generation dataset: name: XQuAD_F1 type: XQuAD_F1 metrics: - name: 0-shot type: f1 value: 29.90 - name: 1-shot type: f1 value: 24.24 - name: 3-shot type: f1 value: 25.64 - name: 5-shot type: f1 value: 36.86 - task: type: text-generation dataset: name: STS_Spearman type: STS_Spearman metrics: - name: 1-shot type: spearman value: 76.50 - name: 3-shot type: spearman value: 73.63 - name: 5-shot type: spearman value: 77.58 - task: type: text-generation dataset: name: STS_Pearson type: STS_Pearson metrics: - name: 1-shot type: pearson value: 75.15 - name: 3-shot type: pearson value: 72.69 - name: 5-shot type: pearson value: 77.63 --- # Model Card for Model ID This model points/is identical to [RoGemma-7b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23). RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b) - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning) ### Model Sources - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks
| Model | |||||||
| gemma-1.1-7b-it | |||||||
| RoGemma-7b-Instruct-2024-06-28 | |||||||
| RoGemma-7b-Instruct-2024-10-09 | |||||||
| RoGemma-7b-Instruct-2025-04-23 | |||||||
| RoGemma-7b-Instruct-DPO-2024-10-09 |
| Model | (Macro F1) |
(Macro F1) |
(Macro F1) |
(Macro F1) |
(Bleu) |
(Bleu) |
(Bleu) |
(Bleu) |
| gemma-1.1-7b-it | ||||||||
| RoGemma-7b-Instruct-2024-06-28 | ||||||||
| RoGemma-7b-Instruct-2024-10-09 | ||||||||
| RoGemma-7b-Instruct-2025-04-23 | ||||||||
| RoGemma-7b-Instruct-DPO-2024-10-09 | ||||||||
| Model | ||||||||
| gemma-1.1-7b-it | ||||||||
| RoGemma-7b-Instruct-2024-06-28 | ||||||||
| RoGemma-7b-Instruct-2024-10-09 | ||||||||
| RoGemma-7b-Instruct-2025-04-23 | ||||||||
| RoGemma-7b-Instruct-DPO-2024-10-09 | ||||||||
| Model | ||||
| gemma-1.1-7b-it | ||||
| RoGemma-7b-Instruct-2024-06-28 | ||||
| RoGemma-7b-Instruct-2024-10-09 | ||||
| RoGemma-7b-Instruct-2025-04-23 | ||||
| RoGemma-7b-Instruct-DPO-2024-10-09 |
| Model | ||
| gemma-1.1-7b-it | ||
| RoGemma-7b-Instruct-2024-06-28 | ||
| RoGemma-7b-Instruct-2024-10-09 | ||
| RoGemma-7b-Instruct-2025-04-23 | ||
| RoGemma-7b-Instruct-DPO-2024-10-09 |