Update README.md
Browse files
README.md
CHANGED
|
@@ -4,6 +4,489 @@ language:
|
|
| 4 |
- ro
|
| 5 |
base_model:
|
| 6 |
- mistralai/Mistral-7B-v0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
---
|
| 8 |
|
| 9 |
# Model Card for Model ID
|
|
@@ -27,6 +510,7 @@ OpenLLM-Ro represents the first open-source effort to build a LLM specialized fo
|
|
| 27 |
- **Language(s):** Romanian
|
| 28 |
- **License:** cc-by-nc-4.0
|
| 29 |
- **Finetuned from model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
|
|
|
| 30 |
|
| 31 |
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
|
| 32 |
|
|
@@ -34,7 +518,7 @@ OpenLLM-Ro represents the first open-source effort to build a LLM specialized fo
|
|
| 34 |
|
| 35 |
<!-- Provide the basic links for the model. -->
|
| 36 |
|
| 37 |
-
- **Repository:** https://github.com/OpenLLM-Ro/
|
| 38 |
- **Paper:** https://arxiv.org/abs/2406.18266
|
| 39 |
|
| 40 |
## Intended Use
|
|
@@ -72,30 +556,139 @@ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
|
|
| 72 |
print(tokenizer.decode(outputs[0]))
|
| 73 |
```
|
| 74 |
|
| 75 |
-
## Benchmarks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
| Model | Average | ARC | MMLU |Winogrande|HellaSwag | GSM8k |TruthfulQA|
|
| 78 |
-
|--------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
| 79 |
-
| Mistral-7B-Instruct-v0.2| 47.41 | 46.25 | 47.04 | 58.72 | 54.25 | 13.59 | *64.63* |
|
| 80 |
-
| *RoMistral-7b-Instruct* | ***52.49*** | ***50.39*** | ***51.64*** | ***66.69*** | ***60.24*** | ***33.71*** | 52.59 |
|
| 81 |
-
|
| 82 |
|
| 83 |
## MT-Bench
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
## RoCulturaBench
|
| 92 |
|
| 93 |
-
| Model | Score | Answers in Ro|
|
| 94 |
-
|--------------------|:--------:|:--------:|
|
| 95 |
-
| Mistral-7B-Instruct-v0.2 | **3.75** | 99 / 100 |
|
| 96 |
-
|*RoMistral-7b-Instruct*| *3.17*| ***100 / 100*** |
|
| 97 |
|
|
|
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
|
|
|
|
| 4 |
- ro
|
| 5 |
base_model:
|
| 6 |
- mistralai/Mistral-7B-v0.1
|
| 7 |
+
datasets:
|
| 8 |
+
- OpenLLM-Ro/ro_sft_alpaca
|
| 9 |
+
- OpenLLM-Ro/ro_sft_alpaca_gpt4
|
| 10 |
+
- OpenLLM-Ro/ro_sft_dolly
|
| 11 |
+
- OpenLLM-Ro/ro_sft_selfinstruct_gpt4
|
| 12 |
+
- OpenLLM-Ro/ro_sft_norobots
|
| 13 |
+
- OpenLLM-Ro/ro_sft_orca
|
| 14 |
+
- OpenLLM-Ro/ro_sft_camel
|
| 15 |
+
model-index:
|
| 16 |
+
- name: OpenLLM-Ro/RoMistral-7b-Instruct
|
| 17 |
+
results:
|
| 18 |
+
- task:
|
| 19 |
+
type: text-generation
|
| 20 |
+
dataset:
|
| 21 |
+
name: RoMT-Bench
|
| 22 |
+
type: RoMT-Bench
|
| 23 |
+
metrics:
|
| 24 |
+
- name: Score
|
| 25 |
+
type: Score
|
| 26 |
+
value: 4.99
|
| 27 |
+
- task:
|
| 28 |
+
type: text-generation
|
| 29 |
+
dataset:
|
| 30 |
+
name: RoCulturaBench
|
| 31 |
+
type: RoCulturaBench
|
| 32 |
+
metrics:
|
| 33 |
+
- name: Score
|
| 34 |
+
type: Score
|
| 35 |
+
value: 3.38
|
| 36 |
+
- task:
|
| 37 |
+
type: text-generation
|
| 38 |
+
dataset:
|
| 39 |
+
name: Romanian_Academic_Benchmarks
|
| 40 |
+
type: Romanian_Academic_Benchmarks
|
| 41 |
+
metrics:
|
| 42 |
+
- name: Average accuracy
|
| 43 |
+
type: accuracy
|
| 44 |
+
value: 52.54
|
| 45 |
+
- task:
|
| 46 |
+
type: text-generation
|
| 47 |
+
dataset:
|
| 48 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
| 49 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
| 50 |
+
metrics:
|
| 51 |
+
- name: Average accuracy
|
| 52 |
+
type: accuracy
|
| 53 |
+
value: 50.41
|
| 54 |
+
- task:
|
| 55 |
+
type: text-generation
|
| 56 |
+
dataset:
|
| 57 |
+
name: OpenLLM-Ro/ro_mmlu
|
| 58 |
+
type: OpenLLM-Ro/ro_mmlu
|
| 59 |
+
metrics:
|
| 60 |
+
- name: Average accuracy
|
| 61 |
+
type: accuracy
|
| 62 |
+
value: 51.61
|
| 63 |
+
- task:
|
| 64 |
+
type: text-generation
|
| 65 |
+
dataset:
|
| 66 |
+
name: OpenLLM-Ro/ro_winogrande
|
| 67 |
+
type: OpenLLM-Ro/ro_winogrande
|
| 68 |
+
metrics:
|
| 69 |
+
- name: Average accuracy
|
| 70 |
+
type: accuracy
|
| 71 |
+
value: 66.48
|
| 72 |
+
- task:
|
| 73 |
+
type: text-generation
|
| 74 |
+
dataset:
|
| 75 |
+
name: OpenLLM-Ro/ro_hellaswag
|
| 76 |
+
type: OpenLLM-Ro/ro_hellaswag
|
| 77 |
+
metrics:
|
| 78 |
+
- name: Average accuracy
|
| 79 |
+
type: accuracy
|
| 80 |
+
value: 60.27
|
| 81 |
+
- task:
|
| 82 |
+
type: text-generation
|
| 83 |
+
dataset:
|
| 84 |
+
name: OpenLLM-Ro/ro_gsm8k
|
| 85 |
+
type: OpenLLM-Ro/ro_gsm8k
|
| 86 |
+
metrics:
|
| 87 |
+
- name: Average accuracy
|
| 88 |
+
type: accuracy
|
| 89 |
+
value: 34.19
|
| 90 |
+
- task:
|
| 91 |
+
type: text-generation
|
| 92 |
+
dataset:
|
| 93 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
| 94 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
| 95 |
+
metrics:
|
| 96 |
+
- name: Average accuracy
|
| 97 |
+
type: accuracy
|
| 98 |
+
value: 52.30
|
| 99 |
+
- task:
|
| 100 |
+
type: text-generation
|
| 101 |
+
dataset:
|
| 102 |
+
name: LaRoSeDa_binary
|
| 103 |
+
type: LaRoSeDa_binary
|
| 104 |
+
metrics:
|
| 105 |
+
- name: Average macro-f1
|
| 106 |
+
type: macro-f1
|
| 107 |
+
value: 97.36
|
| 108 |
+
- task:
|
| 109 |
+
type: text-generation
|
| 110 |
+
dataset:
|
| 111 |
+
name: LaRoSeDa_multiclass
|
| 112 |
+
type: LaRoSeDa_multiclass
|
| 113 |
+
metrics:
|
| 114 |
+
- name: Average macro-f1
|
| 115 |
+
type: macro-f1
|
| 116 |
+
value: 67.55
|
| 117 |
+
- task:
|
| 118 |
+
type: text-generation
|
| 119 |
+
dataset:
|
| 120 |
+
name: LaRoSeDa_binary_finetuned
|
| 121 |
+
type: LaRoSeDa_binary_finetuned
|
| 122 |
+
metrics:
|
| 123 |
+
- name: Average macro-f1
|
| 124 |
+
type: macro-f1
|
| 125 |
+
value: 98.80
|
| 126 |
+
- task:
|
| 127 |
+
type: text-generation
|
| 128 |
+
dataset:
|
| 129 |
+
name: LaRoSeDa_multiclass_finetuned
|
| 130 |
+
type: LaRoSeDa_multiclass_finetuned
|
| 131 |
+
metrics:
|
| 132 |
+
- name: Average macro-f1
|
| 133 |
+
type: macro-f1
|
| 134 |
+
value: 88.28
|
| 135 |
+
- task:
|
| 136 |
+
type: text-generation
|
| 137 |
+
dataset:
|
| 138 |
+
name: WMT_EN-RO
|
| 139 |
+
type: WMT_EN-RO
|
| 140 |
+
metrics:
|
| 141 |
+
- name: Average bleu
|
| 142 |
+
type: bleu
|
| 143 |
+
value: 27.93
|
| 144 |
+
- task:
|
| 145 |
+
type: text-generation
|
| 146 |
+
dataset:
|
| 147 |
+
name: WMT_RO-EN
|
| 148 |
+
type: WMT_RO-EN
|
| 149 |
+
metrics:
|
| 150 |
+
- name: Average bleu
|
| 151 |
+
type: bleu
|
| 152 |
+
value: 13.21
|
| 153 |
+
- task:
|
| 154 |
+
type: text-generation
|
| 155 |
+
dataset:
|
| 156 |
+
name: WMT_EN-RO_finetuned
|
| 157 |
+
type: WMT_EN-RO_finetuned
|
| 158 |
+
metrics:
|
| 159 |
+
- name: Average bleu
|
| 160 |
+
type: bleu
|
| 161 |
+
value: 28.72
|
| 162 |
+
- task:
|
| 163 |
+
type: text-generation
|
| 164 |
+
dataset:
|
| 165 |
+
name: WMT_RO-EN_finetuned
|
| 166 |
+
type: WMT_RO-EN_finetuned
|
| 167 |
+
metrics:
|
| 168 |
+
- name: Average bleu
|
| 169 |
+
type: bleu
|
| 170 |
+
value: 40.86
|
| 171 |
+
- task:
|
| 172 |
+
type: text-generation
|
| 173 |
+
dataset:
|
| 174 |
+
name: XQuAD
|
| 175 |
+
type: XQuAD
|
| 176 |
+
metrics:
|
| 177 |
+
- name: Average exact_match
|
| 178 |
+
type: exact_match
|
| 179 |
+
value: 43.66
|
| 180 |
+
- task:
|
| 181 |
+
type: text-generation
|
| 182 |
+
dataset:
|
| 183 |
+
name: XQuAD
|
| 184 |
+
type: XQuAD
|
| 185 |
+
metrics:
|
| 186 |
+
- name: Average f1
|
| 187 |
+
type: f1
|
| 188 |
+
value: 63.70
|
| 189 |
+
- task:
|
| 190 |
+
type: text-generation
|
| 191 |
+
dataset:
|
| 192 |
+
name: XQuAD_finetuned
|
| 193 |
+
type: XQuAD_finetuned
|
| 194 |
+
metrics:
|
| 195 |
+
- name: Average exact_match
|
| 196 |
+
type: exact_match
|
| 197 |
+
value: 55.04
|
| 198 |
+
- task:
|
| 199 |
+
type: text-generation
|
| 200 |
+
dataset:
|
| 201 |
+
name: XQuAD_finetuned
|
| 202 |
+
type: XQuAD_finetuned
|
| 203 |
+
metrics:
|
| 204 |
+
- name: Average f1
|
| 205 |
+
type: f1
|
| 206 |
+
value: 72.31
|
| 207 |
+
- task:
|
| 208 |
+
type: text-generation
|
| 209 |
+
dataset:
|
| 210 |
+
name: STS
|
| 211 |
+
type: STS
|
| 212 |
+
metrics:
|
| 213 |
+
- name: Average spearman
|
| 214 |
+
type: spearman
|
| 215 |
+
value: 77.43
|
| 216 |
+
- task:
|
| 217 |
+
type: text-generation
|
| 218 |
+
dataset:
|
| 219 |
+
name: STS
|
| 220 |
+
type: STS
|
| 221 |
+
metrics:
|
| 222 |
+
- name: Average pearson
|
| 223 |
+
type: pearson
|
| 224 |
+
value: 78.43
|
| 225 |
+
- task:
|
| 226 |
+
type: text-generation
|
| 227 |
+
dataset:
|
| 228 |
+
name: STS_finetuned
|
| 229 |
+
type: STS_finetuned
|
| 230 |
+
metrics:
|
| 231 |
+
- name: Average spearman
|
| 232 |
+
type: spearman
|
| 233 |
+
value: 87.25
|
| 234 |
+
- task:
|
| 235 |
+
type: text-generation
|
| 236 |
+
dataset:
|
| 237 |
+
name: STS_finetuned
|
| 238 |
+
type: STS_finetuned
|
| 239 |
+
metrics:
|
| 240 |
+
- name: Average pearson
|
| 241 |
+
type: pearson
|
| 242 |
+
value: 87.79
|
| 243 |
+
- task:
|
| 244 |
+
type: text-generation
|
| 245 |
+
dataset:
|
| 246 |
+
name: RoMT-Bench
|
| 247 |
+
type: RoMT-Bench
|
| 248 |
+
metrics:
|
| 249 |
+
- name: First turn
|
| 250 |
+
type: Score
|
| 251 |
+
value: 5.46
|
| 252 |
+
- name: Second turn
|
| 253 |
+
type: Score
|
| 254 |
+
value: 4.53
|
| 255 |
+
- task:
|
| 256 |
+
type: text-generation
|
| 257 |
+
dataset:
|
| 258 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
| 259 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
| 260 |
+
metrics:
|
| 261 |
+
- name: 0-shot
|
| 262 |
+
type: accuracy
|
| 263 |
+
value: 47.47
|
| 264 |
+
- name: 1-shot
|
| 265 |
+
type: accuracy
|
| 266 |
+
value: 48.59
|
| 267 |
+
- name: 3-shot
|
| 268 |
+
type: accuracy
|
| 269 |
+
value: 50.30
|
| 270 |
+
- name: 5-shot
|
| 271 |
+
type: accuracy
|
| 272 |
+
value: 51.33
|
| 273 |
+
- name: 10-shot
|
| 274 |
+
type: accuracy
|
| 275 |
+
value: 52.36
|
| 276 |
+
- name: 25-shot
|
| 277 |
+
type: accuracy
|
| 278 |
+
value: 52.44
|
| 279 |
+
- task:
|
| 280 |
+
type: text-generation
|
| 281 |
+
dataset:
|
| 282 |
+
name: OpenLLM-Ro/ro_mmlu
|
| 283 |
+
type: OpenLLM-Ro/ro_mmlu
|
| 284 |
+
metrics:
|
| 285 |
+
- name: 0-shot
|
| 286 |
+
type: accuracy
|
| 287 |
+
value: 50.01
|
| 288 |
+
- name: 1-shot
|
| 289 |
+
type: accuracy
|
| 290 |
+
value: 50.18
|
| 291 |
+
- name: 3-shot
|
| 292 |
+
type: accuracy
|
| 293 |
+
value: 53.13
|
| 294 |
+
- name: 5-shot
|
| 295 |
+
type: accuracy
|
| 296 |
+
value: 53.12
|
| 297 |
+
- task:
|
| 298 |
+
type: text-generation
|
| 299 |
+
dataset:
|
| 300 |
+
name: OpenLLM-Ro/ro_winogrande
|
| 301 |
+
type: OpenLLM-Ro/ro_winogrande
|
| 302 |
+
metrics:
|
| 303 |
+
- name: 0-shot
|
| 304 |
+
type: accuracy
|
| 305 |
+
value: 64.96
|
| 306 |
+
- name: 1-shot
|
| 307 |
+
type: accuracy
|
| 308 |
+
value: 67.09
|
| 309 |
+
- name: 3-shot
|
| 310 |
+
type: accuracy
|
| 311 |
+
value: 67.01
|
| 312 |
+
- name: 5-shot
|
| 313 |
+
type: accuracy
|
| 314 |
+
value: 66.85
|
| 315 |
+
- task:
|
| 316 |
+
type: text-generation
|
| 317 |
+
dataset:
|
| 318 |
+
name: OpenLLM-Ro/ro_hellaswag
|
| 319 |
+
type: OpenLLM-Ro/ro_hellaswag
|
| 320 |
+
metrics:
|
| 321 |
+
- name: 0-shot
|
| 322 |
+
type: accuracy
|
| 323 |
+
value: 59.99
|
| 324 |
+
- name: 1-shot
|
| 325 |
+
type: accuracy
|
| 326 |
+
value: 59.48
|
| 327 |
+
- name: 3-shot
|
| 328 |
+
type: accuracy
|
| 329 |
+
value: 60.14
|
| 330 |
+
- name: 5-shot
|
| 331 |
+
type: accuracy
|
| 332 |
+
value: 60.61
|
| 333 |
+
- name: 10-shot
|
| 334 |
+
type: accuracy
|
| 335 |
+
value: 61.12
|
| 336 |
+
- task:
|
| 337 |
+
type: text-generation
|
| 338 |
+
dataset:
|
| 339 |
+
name: OpenLLM-Ro/ro_gsm8k
|
| 340 |
+
type: OpenLLM-Ro/ro_gsm8k
|
| 341 |
+
metrics:
|
| 342 |
+
- name: 0-shot
|
| 343 |
+
type: accuracy
|
| 344 |
+
value: 21.68
|
| 345 |
+
- name: 1-shot
|
| 346 |
+
type: accuracy
|
| 347 |
+
value: 38.21
|
| 348 |
+
- name: 3-shot
|
| 349 |
+
type: accuracy
|
| 350 |
+
value: 42.68
|
| 351 |
+
- task:
|
| 352 |
+
type: text-generation
|
| 353 |
+
dataset:
|
| 354 |
+
name: LaRoSeDa_binary
|
| 355 |
+
type: LaRoSeDa_binary
|
| 356 |
+
metrics:
|
| 357 |
+
- name: 0-shot
|
| 358 |
+
type: macro-f1
|
| 359 |
+
value: 97.27
|
| 360 |
+
- name: 1-shot
|
| 361 |
+
type: macro-f1
|
| 362 |
+
value: 96.37
|
| 363 |
+
- name: 3-shot
|
| 364 |
+
type: macro-f1
|
| 365 |
+
value: 97.97
|
| 366 |
+
- name: 5-shot
|
| 367 |
+
type: macro-f1
|
| 368 |
+
value: 97.83
|
| 369 |
+
- task:
|
| 370 |
+
type: text-generation
|
| 371 |
+
dataset:
|
| 372 |
+
name: LaRoSeDa_multiclass
|
| 373 |
+
type: LaRoSeDa_multiclass
|
| 374 |
+
metrics:
|
| 375 |
+
- name: 0-shot
|
| 376 |
+
type: macro-f1
|
| 377 |
+
value: 63.95
|
| 378 |
+
- name: 1-shot
|
| 379 |
+
type: macro-f1
|
| 380 |
+
value: 66.89
|
| 381 |
+
- name: 3-shot
|
| 382 |
+
type: macro-f1
|
| 383 |
+
value: 68.16
|
| 384 |
+
- name: 5-shot
|
| 385 |
+
type: macro-f1
|
| 386 |
+
value: 71.19
|
| 387 |
+
- task:
|
| 388 |
+
type: text-generation
|
| 389 |
+
dataset:
|
| 390 |
+
name: WMT_EN-RO
|
| 391 |
+
type: WMT_EN-RO
|
| 392 |
+
metrics:
|
| 393 |
+
- name: 0-shot
|
| 394 |
+
type: bleu
|
| 395 |
+
value: 24.87
|
| 396 |
+
- name: 1-shot
|
| 397 |
+
type: bleu
|
| 398 |
+
value: 28.30
|
| 399 |
+
- name: 3-shot
|
| 400 |
+
type: bleu
|
| 401 |
+
value: 29.26
|
| 402 |
+
- name: 5-shot
|
| 403 |
+
type: bleu
|
| 404 |
+
value: 29.27
|
| 405 |
+
- task:
|
| 406 |
+
type: text-generation
|
| 407 |
+
dataset:
|
| 408 |
+
name: WMT_RO-EN
|
| 409 |
+
type: WMT_RO-EN
|
| 410 |
+
metrics:
|
| 411 |
+
- name: 0-shot
|
| 412 |
+
type: bleu
|
| 413 |
+
value: 3.69
|
| 414 |
+
- name: 1-shot
|
| 415 |
+
type: bleu
|
| 416 |
+
value: 5.45
|
| 417 |
+
- name: 3-shot
|
| 418 |
+
type: bleu
|
| 419 |
+
value: 19.92
|
| 420 |
+
- name: 5-shot
|
| 421 |
+
type: bleu
|
| 422 |
+
value: 23.80
|
| 423 |
+
- task:
|
| 424 |
+
type: text-generation
|
| 425 |
+
dataset:
|
| 426 |
+
name: XQuAD_EM
|
| 427 |
+
type: XQuAD_EM
|
| 428 |
+
metrics:
|
| 429 |
+
- name: 0-shot
|
| 430 |
+
type: exact_match
|
| 431 |
+
value: 23.36
|
| 432 |
+
- name: 1-shot
|
| 433 |
+
type: exact_match
|
| 434 |
+
value: 47.98
|
| 435 |
+
- name: 3-shot
|
| 436 |
+
type: exact_match
|
| 437 |
+
value: 51.85
|
| 438 |
+
- name: 5-shot
|
| 439 |
+
type: exact_match
|
| 440 |
+
value: 51.43
|
| 441 |
+
- task:
|
| 442 |
+
type: text-generation
|
| 443 |
+
dataset:
|
| 444 |
+
name: XQuAD_F1
|
| 445 |
+
type: XQuAD_F1
|
| 446 |
+
metrics:
|
| 447 |
+
- name: 0-shot
|
| 448 |
+
type: f1
|
| 449 |
+
value: 46.29
|
| 450 |
+
- name: 1-shot
|
| 451 |
+
type: f1
|
| 452 |
+
value: 67.40
|
| 453 |
+
- name: 3-shot
|
| 454 |
+
type: f1
|
| 455 |
+
value: 70.58
|
| 456 |
+
- name: 5-shot
|
| 457 |
+
type: f1
|
| 458 |
+
value: 70.53
|
| 459 |
+
- task:
|
| 460 |
+
type: text-generation
|
| 461 |
+
dataset:
|
| 462 |
+
name: STS
|
| 463 |
+
type: STS
|
| 464 |
+
metrics:
|
| 465 |
+
- name: 0-shot
|
| 466 |
+
type: spearman
|
| 467 |
+
value: 77.91
|
| 468 |
+
- name: 1-shot
|
| 469 |
+
type: spearman
|
| 470 |
+
value: 77.73
|
| 471 |
+
- name: 3-shot
|
| 472 |
+
type: spearman
|
| 473 |
+
value: 76.65
|
| 474 |
+
- task:
|
| 475 |
+
type: text-generation
|
| 476 |
+
dataset:
|
| 477 |
+
name: STS
|
| 478 |
+
type: STS
|
| 479 |
+
metrics:
|
| 480 |
+
- name: 0-shot
|
| 481 |
+
type: pearson
|
| 482 |
+
value: 78.03
|
| 483 |
+
- name: 1-shot
|
| 484 |
+
type: pearson
|
| 485 |
+
value: 78.74
|
| 486 |
+
- name: 3-shot
|
| 487 |
+
type: pearson
|
| 488 |
+
value: 78.53
|
| 489 |
+
|
| 490 |
---
|
| 491 |
|
| 492 |
# Model Card for Model ID
|
|
|
|
| 510 |
- **Language(s):** Romanian
|
| 511 |
- **License:** cc-by-nc-4.0
|
| 512 |
- **Finetuned from model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
| 513 |
+
- **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel)
|
| 514 |
|
| 515 |
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
|
| 516 |
|
|
|
|
| 518 |
|
| 519 |
<!-- Provide the basic links for the model. -->
|
| 520 |
|
| 521 |
+
- **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
|
| 522 |
- **Paper:** https://arxiv.org/abs/2406.18266
|
| 523 |
|
| 524 |
## Intended Use
|
|
|
|
| 556 |
print(tokenizer.decode(outputs[0]))
|
| 557 |
```
|
| 558 |
|
| 559 |
+
## Academic Benchmarks
|
| 560 |
+
|
| 561 |
+
<table>
|
| 562 |
+
<tbody>
|
| 563 |
+
<tr>
|
| 564 |
+
<td><strong>Model</strong></td>
|
| 565 |
+
<td><strong><center>Average</center></strong></td>
|
| 566 |
+
<td><strong><center>ARC</center></strong></td>
|
| 567 |
+
<td><strong><center>MMLU</center></strong></td>
|
| 568 |
+
<td><strong><center>Winogrande</center></strong></td>
|
| 569 |
+
<td><strong><center>Hellaswag</center></strong></td>
|
| 570 |
+
<td><strong><center>GSM8k</center></strong></td>
|
| 571 |
+
<td><strong><center>TruthfulQA</center></strong></td>
|
| 572 |
+
</tr>
|
| 573 |
+
<tr>
|
| 574 |
+
<td>Mistral-7B-Instruct-v0.2</td><td><center>47.40</center></td><td><center>46.29</center></td><td><center>47.01</center></td><td><center>58.78</center></td><td><center>54.27</center></td><td><center>13.47</center></td><td><center><strong>64.59</strong></center></td>
|
| 575 |
+
</tr>
|
| 576 |
+
<tr>
|
| 577 |
+
<td><em>RoMistral-7b-Instruct</em></td><td><center><em><strong>52.54</strong></em></center></td><td><center><em><strong>50.42</strong></em></center></td><td><center><em><strong>51.61</strong></em></center></td><td><center><em><strong>66.48</strong></em></center></td><td><center><em><strong>60.27</strong></em></center></td><td><center><em><strong>34.19</strong></em></center></td><td><center><em>52.30</em></center></td>
|
| 578 |
+
</tr>
|
| 579 |
+
</tbody>
|
| 580 |
+
</table>
|
| 581 |
+
|
| 582 |
+
## Downstream tasks
|
| 583 |
+
|
| 584 |
+
<table>
|
| 585 |
+
<tbody>
|
| 586 |
+
<tr>
|
| 587 |
+
<td></td>
|
| 588 |
+
<td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
|
| 589 |
+
<td colspan="4"><center><strong>WMT</strong></center></td>
|
| 590 |
+
</tr>
|
| 591 |
+
<tr>
|
| 592 |
+
<td></td>
|
| 593 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
| 594 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
| 595 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
| 596 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
| 597 |
+
</tr>
|
| 598 |
+
<tr>
|
| 599 |
+
<td><strong>Model</strong></td>
|
| 600 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
| 601 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
| 602 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
| 603 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
| 604 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
| 605 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
|
| 606 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
| 607 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center>
|
| 608 |
+
</tr>
|
| 609 |
+
<tr>
|
| 610 |
+
<td>Mistral-7B-Instruct-v0.2</td><td><center>96.97</center></td><td><center>56.66</center></td><td><center><strong>98.83</strong></center></td><td><center>87.32</center></td><td><center>18.60</center></td><td><center><strong>33.99</strong></center></td><td><center>26.19</center></td><td><center>39.88</center></td>
|
| 611 |
+
</tr>
|
| 612 |
+
<tr>
|
| 613 |
+
<td><em>RoMistral-7b-Instruct</em></td><td><center><em><strong>97.36</strong></em></center></td><td><center><em><strong>67.55</strong></em></center></td><td><center><em>98.80</em></center></td><td><center><em><strong>88.28</strong></em></center></td><td><center><em><strong>27.93</strong></em></center></td><td><center><em>13.21</em></center></td><td><center><em><strong>28.72</strong></em></center></td><td><center><em><strong>40.86</strong></em></center></td>
|
| 614 |
+
</tr>
|
| 615 |
+
</tbody>
|
| 616 |
+
</table>
|
| 617 |
+
|
| 618 |
+
<table>
|
| 619 |
+
<tbody>
|
| 620 |
+
<tr>
|
| 621 |
+
<td></td>
|
| 622 |
+
<td colspan="4"><center><strong>XQuAD</strong></center></td>
|
| 623 |
+
<td colspan="4"><center><strong>STS</strong></center></td>
|
| 624 |
+
</tr>
|
| 625 |
+
<tr>
|
| 626 |
+
<td></td>
|
| 627 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
| 628 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
| 629 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
| 630 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
| 631 |
+
</tr>
|
| 632 |
+
<tr>
|
| 633 |
+
<td><strong>Model</strong></td>
|
| 634 |
+
<td><center><strong>(EM)</strong></center></td>
|
| 635 |
+
<td><center><strong>(F1)</strong></center></td>
|
| 636 |
+
<td><center><strong>(EM)</strong></center></td>
|
| 637 |
+
<td><center><strong>(F1)</strong></center></td>
|
| 638 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
| 639 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
| 640 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
| 641 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
| 642 |
+
</tr>
|
| 643 |
+
<tr>
|
| 644 |
+
<td>Mistral-7B-Instruct-v0.2</td><td><center>27.92</center></td><td><center>50.71</center></td><td><center><strong>65.46</strong></center></td><td><center><strong>79.73</strong></center></td><td><center>62.62</center></td><td><center>60.86</center></td><td><center>84.92</center></td><td><center>85.44</center></td>
|
| 645 |
+
</tr>
|
| 646 |
+
<tr>
|
| 647 |
+
<td><em>RoMistral-7b-Instruct</em></td><td><center><em><strong>43.66</strong></em></center></td><td><center><em><strong>63.70</strong></em></center></td><td><center><em>55.04</em></center></td><td><center><em>72.31</em></center></td><td><center><em><strong>77.43</strong></em></center></td><td><center><em><strong>78.43</strong></em></center></td><td><center><em><strong>87.25</strong></em></center></td><td><center><em><strong>87.79</strong></em></center></td>
|
| 648 |
+
</tr>
|
| 649 |
+
</tbody>
|
| 650 |
+
</table>
|
| 651 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
|
| 653 |
## MT-Bench
|
| 654 |
|
| 655 |
+
<table>
|
| 656 |
+
<tbody>
|
| 657 |
+
<tr>
|
| 658 |
+
<td><strong>Model</strong></td>
|
| 659 |
+
<td><strong><center>Average</center></strong></td>
|
| 660 |
+
<td><strong><center>1st turn</center></strong></td>
|
| 661 |
+
<td><strong><center>2nd turn</center></strong></td>
|
| 662 |
+
<td><strong><center>Answers in Ro</center></strong></td>
|
| 663 |
+
</tr>
|
| 664 |
+
<tr>
|
| 665 |
+
<td><em>Mistral-7B-Instruct-v0.2</em></td><td><center><em><strong>5.03</strong></em></center></td><td><center><em>5.05</em></center></td><td><center><em><strong>5.00</strong></em></center></td><td><center><em>154/160</em></center></td>
|
| 666 |
+
</tr>
|
| 667 |
+
<tr>
|
| 668 |
+
<td><em>RoMistral-7b-Instruct</em></td><td><center><em>4.99</em></center></td><td><center><em><strong>5.46</strong></em></center></td><td><center><em>4.53</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
|
| 669 |
+
</tr>
|
| 670 |
+
</tbody>
|
| 671 |
+
</table>
|
| 672 |
|
|
|
|
| 673 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 674 |
|
| 675 |
+
## RoCulturaBench
|
| 676 |
|
| 677 |
+
<table>
|
| 678 |
+
<tbody>
|
| 679 |
+
<tr>
|
| 680 |
+
<td><strong>Model</strong></td>
|
| 681 |
+
<td><strong><center>Average</center></strong></td>
|
| 682 |
+
<td><strong><center>Answers in Ro</center></strong></td>
|
| 683 |
+
</tr>
|
| 684 |
+
<tr>
|
| 685 |
+
<td><em>Mistral-7B-Instruct-v0.2</em></td><td><center><em><strong>3.68</strong></em></center></td><td><center><em>97/100</em></center></td>
|
| 686 |
+
</tr>
|
| 687 |
+
<tr>
|
| 688 |
+
<td><em>RoMistral-7b-Instruct</em></td><td><center><em>3.38</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
|
| 689 |
+
</tr>
|
| 690 |
+
</tbody>
|
| 691 |
+
</table>
|
| 692 |
|
| 693 |
|
| 694 |
|