Text Generation
Transformers
Safetensors
granite
code
qiskit
conversational
ndupuis commited on
Commit
a7e67e0
·
1 Parent(s): 3f13c0e

Update README

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -18,14 +18,14 @@ tags:
18
 
19
  ## Model Summary
20
 
21
- **granite-3.2-8b-qiskit** is a 8B parameter model extend pretrained and fine tuned on top of granite3.2-8b-base using Qiskit code and instruction data to improve capabilities at writing high-quality and non-deprecated Qiskit code. We used only data with the following licenses: Apache 2.0, MIT, the Unlicense, Mulan PSL Version 2, BSD-2, BSD-3, and Creative Commons Attribution 4.0.
22
 
23
  - **Developers:** IBM Quantum & IBM Research
24
  - **GitHub Repository:** Pending
25
  - **Related Papers:** [Qiskit Code Assistant: Training LLMs for
26
  generating Quantum Computing Code](https://arxiv.org/abs/2405.19495) and [Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models](https://arxiv.org/abs/2406.14712)
27
- - **Release Date**: Pending
28
- - **License:** Pending.
29
 
30
  ## Usage
31
 
@@ -35,7 +35,7 @@ This model is designed for generating quantum computing code using Qiskit. Both
35
 
36
  ### Generation
37
 
38
- This is a simple example of how to use **granite-8b-qiskit** model.
39
 
40
  ```python
41
  import torch
@@ -69,7 +69,7 @@ for i in output:
69
 
70
  - **Data Collection and Filtering:** Our code data is sourced from a combination of publicly available datasets (e.g., Code available on <https://github.com>), and additional synthetic data generated at IBM Quantum. We exclude code that is older than 2023.
71
  - **Exact and Fuzzy Deduplication:** We use both exact and fuzzy deduplication to remove documents having (near) identical code content.
72
- - **HAP, PII, Malware Filtering:** We rely on the base model ibm-granite/granite-8b-code-base for HAP and malware filtering from the initial datasets used in the context of the base model. We also make sure to redact Personally Identifiable Information (PII) in our datasets by replacing PII content (e.g., names, email addresses, keys, passwords) with corresponding tokens (e.g., ⟨NAME⟩, ⟨EMAIL⟩, ⟨KEY⟩, ⟨PASSWORD⟩).
73
 
74
  ## Infrastructure
75
 
 
18
 
19
  ## Model Summary
20
 
21
+ **granite-3.2-8b-qiskit** is a 8B parameter model extend pretrained and fine tuned on top of granite3.1-8b-base using Qiskit code and instruction data to improve capabilities at writing high-quality and non-deprecated Qiskit code. We used only data with the following licenses: Apache 2.0, MIT, the Unlicense, Mulan PSL Version 2, BSD-2, BSD-3, and Creative Commons Attribution 4.0.
22
 
23
  - **Developers:** IBM Quantum & IBM Research
24
  - **GitHub Repository:** Pending
25
  - **Related Papers:** [Qiskit Code Assistant: Training LLMs for
26
  generating Quantum Computing Code](https://arxiv.org/abs/2405.19495) and [Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models](https://arxiv.org/abs/2406.14712)
27
+ - **Release Date**: 06-03-2025
28
+ - **License:** apache-2.0
29
 
30
  ## Usage
31
 
 
35
 
36
  ### Generation
37
 
38
+ This is a simple example of how to use **granite-3.2-8b-qiskit** model.
39
 
40
  ```python
41
  import torch
 
69
 
70
  - **Data Collection and Filtering:** Our code data is sourced from a combination of publicly available datasets (e.g., Code available on <https://github.com>), and additional synthetic data generated at IBM Quantum. We exclude code that is older than 2023.
71
  - **Exact and Fuzzy Deduplication:** We use both exact and fuzzy deduplication to remove documents having (near) identical code content.
72
+ - **HAP, PII, Malware Filtering:** We rely on the base model ibm-granite/granite-3.1-8b-code-base for HAP and malware filtering from the initial datasets used in the context of the base model. We also make sure to redact Personally Identifiable Information (PII) in our datasets by replacing PII content (e.g., names, email addresses, keys, passwords) with corresponding tokens (e.g., ⟨NAME⟩, ⟨EMAIL⟩, ⟨KEY⟩, ⟨PASSWORD⟩).
73
 
74
  ## Infrastructure
75