Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
|
| 4 |
+
base_model: unsloth/qwen2.5-coder-7b-instruct-bnb-4bit
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
license: apache-2.0
|
| 8 |
+
tags:
|
| 9 |
+
- text-generation-inference
|
| 10 |
+
- transformers
|
| 11 |
+
- unsloth
|
| 12 |
+
- qwen2
|
| 13 |
+
- trl
|
| 14 |
+
- sft
|
| 15 |
+
- fast-apply
|
| 16 |
+
- instant-apply
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
[](https://hf.co/QuantFactory)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# QuantFactory/FastApply-7B-v1.0-GGUF
|
| 24 |
+
This is quantized version of [Kortix/FastApply-7B-v1.0](https://huggingface.co/Kortix/FastApply-7B-v1.0) created using llama.cpp
|
| 25 |
+
|
| 26 |
+
# Original Model Card
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# FastApply-7B-v1.0
|
| 31 |
+
|
| 32 |
+
[Github: kortix-ai/fast-apply](https://github.com/kortix-ai/fast-apply)
|
| 33 |
+
[Dataset: Kortix/FastApply-dataset-v1.0](https://huggingface.co/datasets/Kortix/FastApply-dataset-v1.0)
|
| 34 |
+
[Try it now on 👉 Google Colab](https://colab.research.google.com/drive/1aBqM8Lqso0Xfgtr75G4LFQivXcChU_36?usp=sharing)
|
| 35 |
+
|
| 36 |
+
## Model Details
|
| 37 |
+
|
| 38 |
+
### Basic Information
|
| 39 |
+
|
| 40 |
+
- **Developed by:** Kortix
|
| 41 |
+
- **License:** apache-2.0
|
| 42 |
+
- **Finetuned from model:** [unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit)
|
| 43 |
+
|
| 44 |
+
### Model Description
|
| 45 |
+
|
| 46 |
+
FastApply-7B-v1.0 is a 7B model designed for instant code application, producing full file edits to power [SoftGen AI](https://softgen.ai/).
|
| 47 |
+
It is part of the Fast Apply pipeline for data generation and fine-tuning Qwen2.5 Coder models.
|
| 48 |
+
|
| 49 |
+
The model achieves high throughput when deployed on fast providers like Fireworks while maintaining high edit accuracy, with a speed of approximately 150 tokens/second.
|
| 50 |
+
|
| 51 |
+
## Intended Use
|
| 52 |
+
|
| 53 |
+
FastApply-7B-v1.0 is intended for use in AI-powered code editors and tools that require fast, accurate code modifications. It is particularly well-suited for:
|
| 54 |
+
|
| 55 |
+
- Instant code application tasks
|
| 56 |
+
- Full file edits
|
| 57 |
+
- Integration with AI-powered code editors like Aider and PearAI
|
| 58 |
+
- Local tools to reduce the cost of frontier model output
|
| 59 |
+
|
| 60 |
+
## Inference template
|
| 61 |
+
|
| 62 |
+
FastApply-7B-v1.0 is based on the Qwen2.5 Coder architecture and is fine-tuned for code editing tasks. It uses a specific prompt structure for inference:
|
| 63 |
+
|
| 64 |
+
```
|
| 65 |
+
<|im_start|>system
|
| 66 |
+
You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated.<|im_end|>
|
| 67 |
+
<|im_start|>user
|
| 68 |
+
Merge all changes from the <update> snippet into the <code> below.
|
| 69 |
+
- Preserve the code's structure, order, comments, and indentation exactly.
|
| 70 |
+
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
|
| 71 |
+
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.
|
| 72 |
+
|
| 73 |
+
<code>{original_code}</code>
|
| 74 |
+
|
| 75 |
+
<update>{update_snippet}</update>
|
| 76 |
+
|
| 77 |
+
Provide the complete updated code.<|im_end|>
|
| 78 |
+
<|im_start|>assistant
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
The model's output is structured as:
|
| 82 |
+
|
| 83 |
+
```
|
| 84 |
+
<updated-code>[Full-complete updated file]</updated-code>
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
## Additional Information
|
| 88 |
+
|
| 89 |
+
For more details on the Fast Apply pipeline, data generation process, and deployment instructions, please refer to the [GitHub repository](https://github.com/kortix-ai/fast-apply).
|
| 90 |
+
|
| 91 |
+
## How to Use
|
| 92 |
+
|
| 93 |
+
To use the model, you can load it using the Hugging Face Transformers library:
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
```python
|
| 97 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 98 |
+
|
| 99 |
+
model = AutoModelForCausalLM.from_pretrained("Kortix/FastApply-7B-v1.0")
|
| 100 |
+
tokenizer = AutoTokenizer.from_pretrained("Kortix/FastApply-7B-v1.0")
|
| 101 |
+
|
| 102 |
+
# Prepare your input following the prompt structure mentioned above
|
| 103 |
+
input_text = """<|im_start|>system
|
| 104 |
+
You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated.<|im_end|>
|
| 105 |
+
<|im_start|>user
|
| 106 |
+
Merge all changes from the <update> snippet into the <code> below.
|
| 107 |
+
- Preserve the code's structure, order, comments, and indentation exactly.
|
| 108 |
+
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
|
| 109 |
+
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.
|
| 110 |
+
|
| 111 |
+
<code>{original_code}</code>
|
| 112 |
+
|
| 113 |
+
<update>{update_snippet}</update>
|
| 114 |
+
|
| 115 |
+
Provide the complete updated code.<|im_end|>
|
| 116 |
+
<|im_start|>assistant
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
+
input_text = input_text.format(
|
| 120 |
+
original_code=original_code,
|
| 121 |
+
update_snippet=update_snippet,
|
| 122 |
+
).strip()
|
| 123 |
+
|
| 124 |
+
# Generate the response
|
| 125 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
| 126 |
+
output = model.generate(input_ids, max_length=8192,)
|
| 127 |
+
|
| 128 |
+
response = tokenizer.decode(output[0][len(input_ids[0]):])
|
| 129 |
+
print(response)
|
| 130 |
+
|
| 131 |
+
# Extract the updated code from the response
|
| 132 |
+
updated_code = response.split("<updated-code>")[1].split("</updated-code>")[0]
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
## Evaluation:
|
| 137 |
+
|
| 138 |
+

|
| 139 |
+
|