--- library_name: peft base_model: NousResearch/Yarn-Llama-2-13b-64k tags: - axolotl - generated_from_trainer model-index: - name: 2acb31f5-764e-45b9-8e74-92d66daffe15 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-13b-64k bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 113edc9ac50140a9_train_data.json ds_type: json format: custom path: /workspace/input_data/113edc9ac50140a9_train_data.json type: field_input: context field_instruction: question-X field_output: answer-Y format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/2acb31f5-764e-45b9-8e74-92d66daffe15 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.00025 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 840 micro_batch_size: 4 mlflow_experiment_name: /tmp/113edc9ac50140a9_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04 wandb_entity: null wandb_mode: online wandb_name: ff4eacc6-39f5-47c3-942d-394eedd249f4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ff4eacc6-39f5-47c3-942d-394eedd249f4 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 2acb31f5-764e-45b9-8e74-92d66daffe15 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-13b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-13b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 840 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 27.5358 | 0.0010 | 1 | 3.4175 | | 12.1336 | 0.0996 | 100 | 1.5528 | | 12.1681 | 0.1992 | 200 | 1.5459 | | 13.1276 | 0.2988 | 300 | 1.5165 | | 10.6359 | 0.3984 | 400 | 1.5056 | | 11.4921 | 0.4979 | 500 | 1.4838 | | 11.1868 | 0.5975 | 600 | 1.4700 | | 11.2614 | 0.6971 | 700 | 1.4632 | | 11.4508 | 0.7967 | 800 | 1.4602 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1