--- language: - bn license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small bn - Group 4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: default split: test args: 'config: bn, split: test' metrics: - name: Wer type: wer value: 42.212627219456316 --- # Whisper Small bn - Group 4 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2751 - Wer: 42.2126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.163 | 1.06 | 500 | 0.2064 | 55.6065 | | 0.0862 | 2.12 | 1000 | 0.1675 | 47.1869 | | 0.0475 | 3.18 | 1500 | 0.1696 | 44.8561 | | 0.0239 | 4.24 | 2000 | 0.1848 | 43.2436 | | 0.0119 | 5.3 | 2500 | 0.2081 | 43.5608 | | 0.0058 | 6.36 | 3000 | 0.2262 | 43.0718 | | 0.0024 | 7.42 | 3500 | 0.2427 | 42.4726 | | 0.0009 | 8.47 | 4000 | 0.2611 | 42.6356 | | 0.0005 | 9.53 | 4500 | 0.2709 | 42.3492 | | 0.0004 | 10.59 | 5000 | 0.2751 | 42.2126 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0