Create batch_infer.py
Browse files- batch_infer.py +488 -0
batch_infer.py
ADDED
|
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from concurrent.futures import ProcessPoolExecutor, as_completed
|
| 2 |
+
# import time
|
| 3 |
+
# from datetime import timedelta
|
| 4 |
+
# import pandas as pd
|
| 5 |
+
# import torch
|
| 6 |
+
# import warnings
|
| 7 |
+
# import logging
|
| 8 |
+
# import os
|
| 9 |
+
# import traceback
|
| 10 |
+
|
| 11 |
+
# # --- Load and filter dataframe ---
|
| 12 |
+
# df = pd.read_csv("/home/ubuntu/ttsar/ASR_DATA/train_large.csv")
|
| 13 |
+
# print('before filtering: ')
|
| 14 |
+
# print(df.shape)
|
| 15 |
+
|
| 16 |
+
# df = df[~df['filename'].str.contains("Sakura, Moyu")]
|
| 17 |
+
# print('after filtering: ')
|
| 18 |
+
# print(df.shape)
|
| 19 |
+
|
| 20 |
+
# total_samples = len(df)
|
| 21 |
+
|
| 22 |
+
# # --- PyTorch settings ---
|
| 23 |
+
# torch.set_float32_matmul_precision('high')
|
| 24 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
| 25 |
+
# torch.backends.cudnn.allow_tf32 = True
|
| 26 |
+
|
| 27 |
+
# def process_batch(batch_data):
|
| 28 |
+
# """Process a batch of audio files"""
|
| 29 |
+
# batch_id, start_idx, audio_files, config_path, checkpoint_path = batch_data
|
| 30 |
+
|
| 31 |
+
# model = None # Initialize model to None for the finally block
|
| 32 |
+
# try:
|
| 33 |
+
# # Import and configure libraries within the worker process
|
| 34 |
+
# import torch
|
| 35 |
+
# import nemo.collections.asr as nemo_asr
|
| 36 |
+
# from omegaconf import OmegaConf, open_dict
|
| 37 |
+
# import warnings
|
| 38 |
+
# import logging
|
| 39 |
+
|
| 40 |
+
# # Suppress logs within the worker process to keep the main output clean
|
| 41 |
+
# logging.getLogger('nemo_logger').setLevel(logging.ERROR)
|
| 42 |
+
# logging.disable(logging.CRITICAL)
|
| 43 |
+
# warnings.filterwarnings('ignore')
|
| 44 |
+
|
| 45 |
+
# # Load model for this worker
|
| 46 |
+
# config = OmegaConf.load(config_path)
|
| 47 |
+
# with open_dict(config.cfg):
|
| 48 |
+
# for ds in ['train_ds', 'validation_ds', 'test_ds']:
|
| 49 |
+
# if ds in config.cfg:
|
| 50 |
+
# config.cfg[ds].defer_setup = True
|
| 51 |
+
|
| 52 |
+
# model = nemo_asr.models.EncDecMultiTaskModel(cfg=config.cfg)
|
| 53 |
+
# checkpoint = torch.load(checkpoint_path, map_location='cuda', weights_only=False)
|
| 54 |
+
# model.load_state_dict(checkpoint['state_dict'], strict=False)
|
| 55 |
+
# model = model.eval().cuda()
|
| 56 |
+
|
| 57 |
+
# decode_cfg = model.cfg.decoding
|
| 58 |
+
# decode_cfg.beam.beam_size = 4
|
| 59 |
+
# model.change_decoding_strategy(decode_cfg)
|
| 60 |
+
|
| 61 |
+
# # Transcribe
|
| 62 |
+
# start = time.time()
|
| 63 |
+
# hypotheses = model.transcribe(
|
| 64 |
+
# audio=audio_files,
|
| 65 |
+
# batch_size=64,
|
| 66 |
+
# source_lang='ja',
|
| 67 |
+
# target_lang='ja',
|
| 68 |
+
# task='asr',
|
| 69 |
+
# pnc='no',
|
| 70 |
+
# verbose=False,
|
| 71 |
+
# num_workers=0,
|
| 72 |
+
# channel_selector=0
|
| 73 |
+
# )
|
| 74 |
+
|
| 75 |
+
# results = [hyp.text for hyp in hypotheses]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# return batch_id, start_idx, results, len(audio_files), time.time() - start
|
| 80 |
+
# finally:
|
| 81 |
+
# # NEW: Ensure GPU memory is cleared in the worker process
|
| 82 |
+
# if model is not None:
|
| 83 |
+
# del model
|
| 84 |
+
# import torch
|
| 85 |
+
# torch.cuda.empty_cache()
|
| 86 |
+
|
| 87 |
+
# # --- Parameters ---
|
| 88 |
+
# chunk_size = 512 * 4
|
| 89 |
+
# n_workers = 4
|
| 90 |
+
# checkpoint_interval = 250_000
|
| 91 |
+
|
| 92 |
+
# config_path = "/home/ubuntu/NeMo_Canary/canary_results/Higurashi_ASR_v.02/version_4/hparams.yaml"
|
| 93 |
+
# checkpoint_path = "/home/ubuntu/NeMo_Canary/canary_results/Higurashi_ASR_v.02_plus/checkpoints/Higurashi_ASR_v.02_plus--step=174650.0000-epoch=8-last.ckpt"
|
| 94 |
+
|
| 95 |
+
# # --- Prepare data chunks ---
|
| 96 |
+
# audio_files = df['filename'].tolist()
|
| 97 |
+
# chunks = []
|
| 98 |
+
# for i in range(0, total_samples, chunk_size):
|
| 99 |
+
# end_idx = min(i + chunk_size, total_samples)
|
| 100 |
+
# chunk_files = audio_files[i:end_idx]
|
| 101 |
+
# chunks.append({
|
| 102 |
+
# 'batch_id': len(chunks),
|
| 103 |
+
# 'start_idx': i,
|
| 104 |
+
# 'files': chunk_files,
|
| 105 |
+
# 'config_path': config_path,
|
| 106 |
+
# 'checkpoint_path': checkpoint_path
|
| 107 |
+
# })
|
| 108 |
+
|
| 109 |
+
# print(f"Processing {total_samples:,} samples")
|
| 110 |
+
# print(f"Chunks: {len(chunks)} × ~{chunk_size} samples")
|
| 111 |
+
# print(f"Workers: {n_workers}")
|
| 112 |
+
# print(f"Checkpoint interval: every {checkpoint_interval:,} samples")
|
| 113 |
+
# print("-" * 50)
|
| 114 |
+
|
| 115 |
+
# # --- Initialize tracking variables ---
|
| 116 |
+
# all_results = {}
|
| 117 |
+
# failed_chunks = []
|
| 118 |
+
# start_time = time.time()
|
| 119 |
+
# samples_done = 0
|
| 120 |
+
# last_checkpoint = 0
|
| 121 |
+
# interrupted = False
|
| 122 |
+
|
| 123 |
+
# # Initialize 'text' column with a placeholder
|
| 124 |
+
# df['text'] = pd.NA
|
| 125 |
+
|
| 126 |
+
# # --- Main Processing Loop with Graceful Shutdown ---
|
| 127 |
+
# try:
|
| 128 |
+
# with ProcessPoolExecutor(max_workers=n_workers) as executor:
|
| 129 |
+
# future_to_chunk = {
|
| 130 |
+
# executor.submit(process_batch,
|
| 131 |
+
# (chunk['batch_id'], chunk['start_idx'], chunk['files'], chunk['config_path'], chunk['checkpoint_path'])): chunk
|
| 132 |
+
# for chunk in chunks
|
| 133 |
+
# }
|
| 134 |
+
|
| 135 |
+
# for future in as_completed(future_to_chunk):
|
| 136 |
+
# original_chunk = future_to_chunk[future]
|
| 137 |
+
# batch_id = original_chunk['batch_id']
|
| 138 |
+
|
| 139 |
+
# try:
|
| 140 |
+
# _batch_id, start_idx, results, count, batch_time = future.result()
|
| 141 |
+
|
| 142 |
+
# all_results[start_idx] = results
|
| 143 |
+
# samples_done += count
|
| 144 |
+
|
| 145 |
+
# end_idx = start_idx + len(results)
|
| 146 |
+
# if len(df.iloc[start_idx:end_idx]) == len(results):
|
| 147 |
+
# df.loc[start_idx:end_idx-1, 'text'] = results
|
| 148 |
+
# else:
|
| 149 |
+
# raise ValueError(f"Length mismatch: DataFrame slice vs results")
|
| 150 |
+
|
| 151 |
+
# elapsed = time.time() - start_time
|
| 152 |
+
# speed = samples_done / elapsed if elapsed > 0 else 0
|
| 153 |
+
# remaining = total_samples - samples_done
|
| 154 |
+
# eta = remaining / speed if speed > 0 else 0
|
| 155 |
+
|
| 156 |
+
# print(f"✓ Batch {batch_id}/{len(chunks)-1} done ({count} samples in {batch_time:.1f}s) | "
|
| 157 |
+
# f"Total: {samples_done:,}/{total_samples:,} ({100*samples_done/total_samples:.1f}%) | "
|
| 158 |
+
# f"Speed: {speed:.1f} samples/s | "
|
| 159 |
+
# f"ETA: {timedelta(seconds=int(eta))}")
|
| 160 |
+
|
| 161 |
+
# if samples_done - last_checkpoint >= checkpoint_interval or samples_done == total_samples:
|
| 162 |
+
# checkpoint_file = f"/home/ubuntu/ttsar/ASR_DATA/transcribed_checkpoint_{samples_done}.csv"
|
| 163 |
+
# df.to_csv(checkpoint_file, index=False)
|
| 164 |
+
# print(f" ✓ Checkpoint saved: {checkpoint_file}")
|
| 165 |
+
# last_checkpoint = samples_done
|
| 166 |
+
|
| 167 |
+
# except Exception:
|
| 168 |
+
# failed_chunks.append(original_chunk)
|
| 169 |
+
# print("-" * 20 + " ERROR " + "-" * 20)
|
| 170 |
+
# print(f"✗ Batch {batch_id} FAILED. Start index: {original_chunk['start_idx']}. Files: {len(original_chunk['files'])}")
|
| 171 |
+
# traceback.print_exc()
|
| 172 |
+
# print("-" * 47)
|
| 173 |
+
|
| 174 |
+
# except KeyboardInterrupt:
|
| 175 |
+
# interrupted = True
|
| 176 |
+
# print("\n\n" + "="*50)
|
| 177 |
+
# print("! KEYBOARD INTERRUPT DETECTED !")
|
| 178 |
+
# print("Stopping workers and saving all completed progress...")
|
| 179 |
+
# print("The script will exit shortly.")
|
| 180 |
+
# print("="*50 + "\n")
|
| 181 |
+
# # The `with ProcessPoolExecutor` context manager will automatically
|
| 182 |
+
# # handle shutting down the worker processes when we exit this block.
|
| 183 |
+
|
| 184 |
+
# # --- Finalization and Reporting (this block now runs on completion OR interruption) ---
|
| 185 |
+
# total_time = time.time() - start_time
|
| 186 |
+
# print("-" * 50)
|
| 187 |
+
# if interrupted:
|
| 188 |
+
# print(f"PROCESS INTERRUPTED")
|
| 189 |
+
# else:
|
| 190 |
+
# print(f"TRANSCRIPTION COMPLETE!")
|
| 191 |
+
|
| 192 |
+
# print(f"Total time elapsed: {timedelta(seconds=int(total_time))}")
|
| 193 |
+
# if total_time > 0 and samples_done > 0:
|
| 194 |
+
# print(f"Average speed (on completed work): {samples_done/total_time:.1f} samples/second")
|
| 195 |
+
|
| 196 |
+
# # Save final result
|
| 197 |
+
# final_output = "/home/ubuntu/ttsar/ASR_DATA/transcribed_manifest_final.csv"
|
| 198 |
+
# df.to_csv(final_output, index=False)
|
| 199 |
+
# print(f"Final progress saved to: {final_output}")
|
| 200 |
+
# print("-" * 50)
|
| 201 |
+
|
| 202 |
+
# # --- Summary and Verification ---
|
| 203 |
+
# successful_transcriptions = df['text'].notna().sum()
|
| 204 |
+
# print("Final Run Summary:")
|
| 205 |
+
# print(f" - Successfully transcribed: {successful_transcriptions:,} samples")
|
| 206 |
+
# print(f" - Failed batches: {len(failed_chunks)}")
|
| 207 |
+
# print(f" - Total samples in failed batches: {sum(len(c['files']) for c in failed_chunks):,}")
|
| 208 |
+
|
| 209 |
+
# if failed_chunks:
|
| 210 |
+
# failed_files_path = "/home/ubuntu/ttsar/ASR_DATA/failed_transcription_files.txt"
|
| 211 |
+
# with open(failed_files_path, 'w') as f:
|
| 212 |
+
# for chunk in failed_chunks:
|
| 213 |
+
# for file_path in chunk['files']:
|
| 214 |
+
# f.write(f"{file_path}\n")
|
| 215 |
+
# print(f"\nList of files from failed batches saved to: {failed_files_path}")
|
| 216 |
+
|
| 217 |
+
# print("-" * 50)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
#NOTE #NOTE
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
from concurrent.futures import ProcessPoolExecutor, as_completed
|
| 224 |
+
import time
|
| 225 |
+
from datetime import timedelta
|
| 226 |
+
import pandas as pd
|
| 227 |
+
import torch
|
| 228 |
+
import warnings
|
| 229 |
+
import logging
|
| 230 |
+
import os
|
| 231 |
+
import traceback
|
| 232 |
+
|
| 233 |
+
# --- LOAD CHECKPOINT ---
|
| 234 |
+
checkpoint_file = "/home/ubuntu/ttsar/csv_kanad/sing/cg_shani_sing.csv"
|
| 235 |
+
print(f"Loading checkpoint from: {checkpoint_file}")
|
| 236 |
+
df = pd.read_csv(checkpoint_file)
|
| 237 |
+
print(f"Checkpoint loaded. Shape: {df.shape}")
|
| 238 |
+
|
| 239 |
+
# Check if 'text' column exists, if not create it
|
| 240 |
+
if 'text' not in df.columns:
|
| 241 |
+
df['text'] = pd.NA
|
| 242 |
+
|
| 243 |
+
# --- FIND ALL MISSING TRANSCRIPTIONS ---
|
| 244 |
+
missing_mask = df['text'].isna()
|
| 245 |
+
missing_indices = df[missing_mask].index.tolist()
|
| 246 |
+
already_done = (~missing_mask).sum()
|
| 247 |
+
|
| 248 |
+
print(f"Already transcribed: {already_done:,} samples")
|
| 249 |
+
print(f"Missing transcriptions: {len(missing_indices):,} samples")
|
| 250 |
+
print("-" * 50)
|
| 251 |
+
|
| 252 |
+
if len(missing_indices) == 0:
|
| 253 |
+
print("All samples already transcribed!")
|
| 254 |
+
exit(0)
|
| 255 |
+
|
| 256 |
+
# --- PyTorch settings ---
|
| 257 |
+
torch.set_float32_matmul_precision('high')
|
| 258 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 259 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 260 |
+
|
| 261 |
+
def process_batch(batch_data):
|
| 262 |
+
"""Process a batch of audio files"""
|
| 263 |
+
batch_id, indices, audio_files, config_path, checkpoint_path = batch_data
|
| 264 |
+
|
| 265 |
+
model = None
|
| 266 |
+
try:
|
| 267 |
+
# Import and configure libraries within the worker process
|
| 268 |
+
import torch
|
| 269 |
+
import nemo.collections.asr as nemo_asr
|
| 270 |
+
from omegaconf import OmegaConf, open_dict
|
| 271 |
+
import warnings
|
| 272 |
+
import logging
|
| 273 |
+
|
| 274 |
+
# Suppress logs within the worker process
|
| 275 |
+
logging.getLogger('nemo_logger').setLevel(logging.ERROR)
|
| 276 |
+
logging.disable(logging.CRITICAL)
|
| 277 |
+
warnings.filterwarnings('ignore')
|
| 278 |
+
|
| 279 |
+
# Load model for this worker
|
| 280 |
+
config = OmegaConf.load(config_path)
|
| 281 |
+
with open_dict(config.cfg):
|
| 282 |
+
for ds in ['train_ds', 'validation_ds', 'test_ds']:
|
| 283 |
+
if ds in config.cfg:
|
| 284 |
+
config.cfg[ds].defer_setup = True
|
| 285 |
+
|
| 286 |
+
model = nemo_asr.models.EncDecMultiTaskModel(cfg=config.cfg)
|
| 287 |
+
checkpoint = torch.load(checkpoint_path, map_location='cuda', weights_only=False)
|
| 288 |
+
model.load_state_dict(checkpoint['state_dict'], strict=False)
|
| 289 |
+
model = model.eval().cuda().bfloat16()
|
| 290 |
+
|
| 291 |
+
decode_cfg = model.cfg.decoding
|
| 292 |
+
decode_cfg.beam.beam_size = 1
|
| 293 |
+
model.change_decoding_strategy(decode_cfg)
|
| 294 |
+
|
| 295 |
+
# Transcribe
|
| 296 |
+
start = time.time()
|
| 297 |
+
try:
|
| 298 |
+
hypotheses = model.transcribe(
|
| 299 |
+
audio=audio_files,
|
| 300 |
+
batch_size=64,
|
| 301 |
+
source_lang='ja',
|
| 302 |
+
target_lang='ja',
|
| 303 |
+
task='asr',
|
| 304 |
+
pnc='no',
|
| 305 |
+
verbose=False,
|
| 306 |
+
num_workers=0,
|
| 307 |
+
channel_selector=0
|
| 308 |
+
)
|
| 309 |
+
results = [hyp.text for hyp in hypotheses]
|
| 310 |
+
except Exception as e:
|
| 311 |
+
print(f"Transcription error in batch {batch_id}: {str(e)}")
|
| 312 |
+
# Return empty results list on transcription failure
|
| 313 |
+
results = []
|
| 314 |
+
|
| 315 |
+
# Pad results with None if we got fewer results than expected
|
| 316 |
+
while len(results) < len(audio_files):
|
| 317 |
+
results.append(None)
|
| 318 |
+
|
| 319 |
+
# Count successful transcriptions
|
| 320 |
+
success_count = len([r for r in results if r is not None])
|
| 321 |
+
|
| 322 |
+
# Return indices and results as a tuple for pairing
|
| 323 |
+
return batch_id, list(zip(indices, results)), success_count, time.time() - start
|
| 324 |
+
|
| 325 |
+
finally:
|
| 326 |
+
if model is not None:
|
| 327 |
+
del model
|
| 328 |
+
import torch
|
| 329 |
+
torch.cuda.empty_cache()
|
| 330 |
+
|
| 331 |
+
# --- Parameters ---
|
| 332 |
+
chunk_size = 512 * 4 # 2048
|
| 333 |
+
n_workers = 6
|
| 334 |
+
checkpoint_interval = 250_000
|
| 335 |
+
|
| 336 |
+
config_path = "/home/ubuntu/NeMo_Canary/canary_results/Higurashi_ASR_v.02/version_4/hparams.yaml"
|
| 337 |
+
checkpoint_path = "/home/ubuntu/NeMo_Canary/canary_results/Higurashi_ASR_v.02_plus/checkpoints/Higurashi_ASR_v.02_plus--step=174650.0000-epoch=8-last.ckpt"
|
| 338 |
+
|
| 339 |
+
# --- Create batches from missing indices ---
|
| 340 |
+
chunks = []
|
| 341 |
+
for i in range(0, len(missing_indices), chunk_size):
|
| 342 |
+
batch_indices = missing_indices[i:i+chunk_size]
|
| 343 |
+
batch_files = df.loc[batch_indices, 'filename'].tolist()
|
| 344 |
+
|
| 345 |
+
chunks.append({
|
| 346 |
+
'batch_id': len(chunks),
|
| 347 |
+
'indices': batch_indices,
|
| 348 |
+
'files': batch_files,
|
| 349 |
+
'config_path': config_path,
|
| 350 |
+
'checkpoint_path': checkpoint_path
|
| 351 |
+
})
|
| 352 |
+
|
| 353 |
+
print(f"Total batches to process: {len(chunks)}")
|
| 354 |
+
print(f"Batch size: ~{chunk_size} samples")
|
| 355 |
+
print(f"Workers: {n_workers}")
|
| 356 |
+
print(f"Checkpoint interval: every {checkpoint_interval:,} samples")
|
| 357 |
+
print("-" * 50)
|
| 358 |
+
|
| 359 |
+
# --- Initialize tracking variables ---
|
| 360 |
+
all_results = {}
|
| 361 |
+
failed_chunks = []
|
| 362 |
+
failed_files_list = []
|
| 363 |
+
start_time = time.time()
|
| 364 |
+
samples_done = 0
|
| 365 |
+
samples_failed = 0
|
| 366 |
+
last_checkpoint = 0
|
| 367 |
+
interrupted = False
|
| 368 |
+
total_to_process = len(missing_indices)
|
| 369 |
+
|
| 370 |
+
# --- Main Processing Loop ---
|
| 371 |
+
try:
|
| 372 |
+
with ProcessPoolExecutor(max_workers=n_workers) as executor:
|
| 373 |
+
future_to_chunk = {
|
| 374 |
+
executor.submit(process_batch,
|
| 375 |
+
(chunk['batch_id'], chunk['indices'], chunk['files'],
|
| 376 |
+
chunk['config_path'], chunk['checkpoint_path'])): chunk
|
| 377 |
+
for chunk in chunks
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
for future in as_completed(future_to_chunk):
|
| 381 |
+
original_chunk = future_to_chunk[future]
|
| 382 |
+
batch_id = original_chunk['batch_id']
|
| 383 |
+
|
| 384 |
+
try:
|
| 385 |
+
_batch_id, index_result_pairs, success_count, batch_time = future.result()
|
| 386 |
+
|
| 387 |
+
# Update DataFrame with results
|
| 388 |
+
failed_in_batch = 0
|
| 389 |
+
for idx, result in index_result_pairs:
|
| 390 |
+
if result is not None:
|
| 391 |
+
df.loc[idx, 'text'] = result
|
| 392 |
+
else:
|
| 393 |
+
df.loc[idx, 'text'] = "[FAILED]"
|
| 394 |
+
failed_in_batch += 1
|
| 395 |
+
failed_files_list.append(df.loc[idx, 'filename'])
|
| 396 |
+
|
| 397 |
+
samples_done += success_count
|
| 398 |
+
samples_failed += failed_in_batch
|
| 399 |
+
|
| 400 |
+
elapsed = time.time() - start_time
|
| 401 |
+
speed = samples_done / elapsed if elapsed > 0 else 0
|
| 402 |
+
remaining = total_to_process - samples_done - samples_failed
|
| 403 |
+
eta = remaining / speed if speed > 0 else 0
|
| 404 |
+
|
| 405 |
+
current_total = already_done + samples_done
|
| 406 |
+
|
| 407 |
+
status = f"✓ Batch {batch_id}/{len(chunks)-1} done ({success_count} success"
|
| 408 |
+
if failed_in_batch > 0:
|
| 409 |
+
status += f", {failed_in_batch} failed"
|
| 410 |
+
status += f" in {batch_time:.1f}s)"
|
| 411 |
+
|
| 412 |
+
print(f"{status} | "
|
| 413 |
+
f"Processed: {samples_done:,}/{total_to_process:,} | "
|
| 414 |
+
f"Total: {current_total:,}/{len(df):,} ({100*current_total/len(df):.1f}%) | "
|
| 415 |
+
f"Speed: {speed:.1f} samples/s | "
|
| 416 |
+
f"ETA: {timedelta(seconds=int(eta))}")
|
| 417 |
+
|
| 418 |
+
# Save checkpoint
|
| 419 |
+
if samples_done - last_checkpoint >= checkpoint_interval or (samples_done + samples_failed) >= total_to_process:
|
| 420 |
+
checkpoint_file = f"/home/ubuntu/ttsar/ASR_DATA/transcribed_checkpoint_{current_total}.csv"
|
| 421 |
+
df.to_csv(checkpoint_file, index=False)
|
| 422 |
+
print(f" ✓ Checkpoint saved: {checkpoint_file}")
|
| 423 |
+
last_checkpoint = samples_done
|
| 424 |
+
|
| 425 |
+
except Exception as e:
|
| 426 |
+
failed_chunks.append(original_chunk)
|
| 427 |
+
print("-" * 20 + " ERROR " + "-" * 20)
|
| 428 |
+
print(f"✗ Batch {batch_id} FAILED. Indices count: {len(original_chunk['indices'])}")
|
| 429 |
+
print(f"Error: {str(e)}")
|
| 430 |
+
traceback.print_exc()
|
| 431 |
+
print("-" * 47)
|
| 432 |
+
|
| 433 |
+
except KeyboardInterrupt:
|
| 434 |
+
interrupted = True
|
| 435 |
+
print("\n\n" + "="*50)
|
| 436 |
+
print("! KEYBOARD INTERRUPT DETECTED !")
|
| 437 |
+
print("Stopping workers and saving progress...")
|
| 438 |
+
print("="*50 + "\n")
|
| 439 |
+
|
| 440 |
+
# --- Finalization ---
|
| 441 |
+
total_time = time.time() - start_time
|
| 442 |
+
print("-" * 50)
|
| 443 |
+
if interrupted:
|
| 444 |
+
print(f"PROCESS INTERRUPTED")
|
| 445 |
+
else:
|
| 446 |
+
print(f"PROCESSING COMPLETE!")
|
| 447 |
+
|
| 448 |
+
print(f"Session time: {timedelta(seconds=int(total_time))}")
|
| 449 |
+
print(f"Samples successfully processed: {samples_done:,}")
|
| 450 |
+
print(f"Samples failed: {samples_failed:,}")
|
| 451 |
+
if total_time > 0 and samples_done > 0:
|
| 452 |
+
print(f"Average speed: {samples_done/total_time:.1f} samples/second")
|
| 453 |
+
|
| 454 |
+
# Save final result
|
| 455 |
+
final_output = "/home/ubuntu/ttsar/ASR_DATA/transcribed_manifest_final.csv"
|
| 456 |
+
df.to_csv(final_output, index=False)
|
| 457 |
+
print(f"Final output saved to: {final_output}")
|
| 458 |
+
print("-" * 50)
|
| 459 |
+
|
| 460 |
+
# --- Summary ---
|
| 461 |
+
successful_transcriptions = df['text'].notna().sum() - (df['text'] == "[FAILED]").sum()
|
| 462 |
+
failed_transcriptions = (df['text'] == "[FAILED]").sum()
|
| 463 |
+
remaining_missing = df['text'].isna().sum()
|
| 464 |
+
|
| 465 |
+
print("Summary:")
|
| 466 |
+
print(f" - Total dataset size: {len(df):,} samples")
|
| 467 |
+
print(f" - Successfully transcribed: {successful_transcriptions:,} samples")
|
| 468 |
+
print(f" - Failed transcriptions: {failed_transcriptions:,} samples")
|
| 469 |
+
print(f" - Still missing (NaN): {remaining_missing:,} samples")
|
| 470 |
+
print(f" - Processed this session: {samples_done:,} successful, {samples_failed:,} failed")
|
| 471 |
+
print(f" - Failed batches (entire batch): {len(failed_chunks)}")
|
| 472 |
+
|
| 473 |
+
# Save list of failed files
|
| 474 |
+
if failed_files_list:
|
| 475 |
+
failed_files_path = "/home/ubuntu/ttsar/ASR_DATA/failed_transcription_files.txt"
|
| 476 |
+
with open(failed_files_path, 'w') as f:
|
| 477 |
+
for file_path in failed_files_list:
|
| 478 |
+
f.write(f"{file_path}\n")
|
| 479 |
+
print(f"\nFailed files saved to: {failed_files_path}")
|
| 480 |
+
|
| 481 |
+
if failed_chunks:
|
| 482 |
+
failed_batches_path = "/home/ubuntu/ttsar/ASR_DATA/failed_batches.txt"
|
| 483 |
+
with open(failed_batches_path, 'w') as f:
|
| 484 |
+
for chunk in failed_chunks:
|
| 485 |
+
f.write(f"Batch {chunk['batch_id']}: indices {chunk['indices'][:5]}... ({len(chunk['indices'])} total)\n")
|
| 486 |
+
print(f"Failed batch info saved to: {failed_batches_path}")
|
| 487 |
+
|
| 488 |
+
print("-" * 50)
|