# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2017 Johns Hopkins University (Shinji Watanabe) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Example: python scripts/checkpoint_averaging/zarr_distributed_checkpoint_averaging.py \ --name_prefix= \ --checkpoint_dir= \ --steps will generate a new directory in each of the distributed checkpoint subfolders named -averaged """ import argparse import logging import os import shutil import numpy as np import zarr logging.basicConfig(level=logging.INFO) def main(): """ Main function """ parser = argparse.ArgumentParser() parser.add_argument( '--name_prefix', help='Name of the final checkpoint. Will append -averaged automatically.', ) parser.add_argument( '--checkpoint_dir', help='Folder containing all the distributed checkpoints.', ) # list of checkpoint steps to average parser.add_argument( '--steps', nargs='+', type=int, help='List of checkpoint steps to average. If not specified, will average all.', ) args = parser.parse_args() if args.steps is not None: logging.info(f"Will average only steps {args.steps}") # repeating for all ranks checkpoint_paths = [] for ckpt_dir in os.listdir(args.checkpoint_dir): logging.info("Processing %s", ckpt_dir) if ckpt_dir.endswith('0-last'): continue if args.steps is None: checkpoint_paths.append(ckpt_dir) else: for step in args.steps: key = f"-step={step}-" if key in ckpt_dir: checkpoint_paths.append(ckpt_dir) n = len(checkpoint_paths) # initialize dict, will be used to store the weights that need to be averaged avg_weights = {} chunk_info = {} logging.info(f"Averaging {n} checkpoints ... {'at steps:' + str(args.steps) if args.steps is not None else ''}") # item that needs to be copied to the new checkpoint folder copy_items = [] for ix, path in enumerate(checkpoint_paths): full_path = os.path.join(args.checkpoint_dir, path) for item in os.listdir(full_path): # if item is not a directory, skip it if not os.path.isdir(os.path.join(full_path, item)): if ix == 0: copy_items.append(os.path.join(full_path, item)) continue # transformer engine states, leave them out if item.endswith('._extra_state'): if ix == 0: copy_items.append(os.path.join(full_path, item)) continue # optimizer states, no point of averaing them if item.startswith('optimizer.'): if ix == 0: copy_items.append(os.path.join(full_path, item)) continue if item not in avg_weights: logging.info(f"Initialized average weights dict with: {item}") array = zarr.open(os.path.join(full_path, item), mode='r') avg_weights[item] = array[:] chunk_info[item] = array.chunks else: logging.info(f"Updated average weights dict with weight: {item}") array_z = zarr.open(os.path.join(full_path, item), mode='r') sum_array = avg_weights[item] + array_z[:] avg_weights[item] = sum_array for k in avg_weights: logging.info(f"Average weights dict key : {k}, dtype : {avg_weights[k].dtype}, shape : {avg_weights[k].shape}") if str(avg_weights[k].dtype).startswith("int"): raise ValueError("Int type not supported") else: array_z = avg_weights[k] / n avg_weights[k] = array_z # Save model if args.steps is None: ckpt_name = os.path.join(args.checkpoint_dir, args.name_prefix + '-averaged') else: steps_combined = '_'.join([str(x) for x in args.steps]) ckpt_name = os.path.join(args.checkpoint_dir, args.name_prefix + '-' + steps_combined + '-averaged') # save avg_weights for k in avg_weights: logging.info(f"Saving {k} to {ckpt_name}") input_arr = avg_weights[k] chunks = chunk_info[k] # create the zarr array output_array = zarr.create( input_arr.shape, dtype=input_arr.dtype, store=os.path.join(ckpt_name, k), chunks=chunks, compressor=None, fill_value=None, write_empty_chunks=True, ) if input_arr.dtype == np.dtype('bfloat16'): arr = output_array arr._dtype = input_arr.dtype zarray = arr.store['.zarray'] arr.store['.zarray'] = zarray.replace(b'