File size: 3,986 Bytes
d312c5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-0.6B
tags:
- axolotl
- generated_from_trainer
datasets:
- Rexhaif/wmt23-pairs-sft
model-index:
- name: Qwen3-0.6B-MTEval-SFT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.9.2`
```yaml
base_model: Qwen/Qwen3-0.6B
# Automatically upload checkpoint and final model to HF
hub_model_id: Rexhaif/Qwen3-0.6B-MTEval-SFT
hub_private_repo: false

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: tokenizer_default
datasets:
  - path: Rexhaif/wmt23-pairs-sft
    split: "train"
    type: chat_template
    field_messages: messages
    roles_to_train: ["assistant"]

shuffle_merged_datasets: true

skip_prepare_dataset: false
dataset_prepared_path: ./data/wmt23-pairs-sft
output_dir: /hnvme/workspace/v106be28-outputs/sft-0.6b

dataloader_prefetch_factor: 32
dataloader_num_workers: 2
dataloader_pin_memory: true

gc_steps: 1

sequence_len: 512
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false

wandb_project: llm-reasoning-mt-eval
wandb_entity:
wandb_name: qw3-0.6b-sft

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 1
micro_batch_size: 64  # should match num_generations / num_gpus

optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 5.0e-5
cosine_min_lr_ratio: 1.0e-7
max_grad_norm: 1.0
weight_decay: 0.1

bf16: true
tf32: true

flash_attention: true
flash_attn_fuse_qkv: true
flash_attn_fuse_mlp: true
auto_resume_from_checkpoints: true

n_epochs: 3
logging_steps: 10
warmup_ratio: 0.1
evals_per_epoch: 10
saves_per_epoch: 10
save_total_limit: 1
#max_steps: 5000
seed: 42
val_set_size: 0.01

gradient_checkpointing: false
gradient_checkpointing_kwargs:
  use_reentrant: false

```

</details><br>

# Qwen3-0.6B-MTEval-SFT

This model is a fine-tuned version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) on the Rexhaif/wmt23-pairs-sft dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0486

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 101
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0010 | 1    | 7.5881          |
| 0.2427        | 0.1003 | 102  | 0.2504          |
| 0.2062        | 0.2006 | 204  | 0.1936          |
| 0.1631        | 0.3009 | 306  | 0.1606          |
| 0.1315        | 0.4012 | 408  | 0.1243          |
| 0.0999        | 0.5015 | 510  | 0.1098          |
| 0.0871        | 0.6018 | 612  | 0.0871          |
| 0.0611        | 0.7021 | 714  | 0.0702          |
| 0.0586        | 0.8024 | 816  | 0.0564          |
| 0.0478        | 0.9027 | 918  | 0.0486          |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1