File size: 3,986 Bytes
d312c5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-0.6B
tags:
- axolotl
- generated_from_trainer
datasets:
- Rexhaif/wmt23-pairs-sft
model-index:
- name: Qwen3-0.6B-MTEval-SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.9.2`
```yaml
base_model: Qwen/Qwen3-0.6B
# Automatically upload checkpoint and final model to HF
hub_model_id: Rexhaif/Qwen3-0.6B-MTEval-SFT
hub_private_repo: false
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: tokenizer_default
datasets:
- path: Rexhaif/wmt23-pairs-sft
split: "train"
type: chat_template
field_messages: messages
roles_to_train: ["assistant"]
shuffle_merged_datasets: true
skip_prepare_dataset: false
dataset_prepared_path: ./data/wmt23-pairs-sft
output_dir: /hnvme/workspace/v106be28-outputs/sft-0.6b
dataloader_prefetch_factor: 32
dataloader_num_workers: 2
dataloader_pin_memory: true
gc_steps: 1
sequence_len: 512
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
wandb_project: llm-reasoning-mt-eval
wandb_entity:
wandb_name: qw3-0.6b-sft
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 1
micro_batch_size: 64 # should match num_generations / num_gpus
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 5.0e-5
cosine_min_lr_ratio: 1.0e-7
max_grad_norm: 1.0
weight_decay: 0.1
bf16: true
tf32: true
flash_attention: true
flash_attn_fuse_qkv: true
flash_attn_fuse_mlp: true
auto_resume_from_checkpoints: true
n_epochs: 3
logging_steps: 10
warmup_ratio: 0.1
evals_per_epoch: 10
saves_per_epoch: 10
save_total_limit: 1
#max_steps: 5000
seed: 42
val_set_size: 0.01
gradient_checkpointing: false
gradient_checkpointing_kwargs:
use_reentrant: false
```
</details><br>
# Qwen3-0.6B-MTEval-SFT
This model is a fine-tuned version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) on the Rexhaif/wmt23-pairs-sft dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0486
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 101
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0010 | 1 | 7.5881 |
| 0.2427 | 0.1003 | 102 | 0.2504 |
| 0.2062 | 0.2006 | 204 | 0.1936 |
| 0.1631 | 0.3009 | 306 | 0.1606 |
| 0.1315 | 0.4012 | 408 | 0.1243 |
| 0.0999 | 0.5015 | 510 | 0.1098 |
| 0.0871 | 0.6018 | 612 | 0.0871 |
| 0.0611 | 0.7021 | 714 | 0.0702 |
| 0.0586 | 0.8024 | 816 | 0.0564 |
| 0.0478 | 0.9027 | 918 | 0.0486 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
|