ShallowU's picture
End of training
8ba376a verified
{
"best_metric": 0.9285714285714286,
"best_model_checkpoint": "videomae-base-finetuned-ucf101-subset/checkpoint-114",
"epoch": 3.22972972972973,
"eval_steps": 500,
"global_step": 148,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.06756756756756757,
"grad_norm": 6.407984733581543,
"learning_rate": 3.3333333333333335e-05,
"loss": 2.3019,
"step": 10
},
{
"epoch": 0.13513513513513514,
"grad_norm": 6.60537576675415,
"learning_rate": 4.81203007518797e-05,
"loss": 2.2244,
"step": 20
},
{
"epoch": 0.20270270270270271,
"grad_norm": 8.354103088378906,
"learning_rate": 4.43609022556391e-05,
"loss": 2.1059,
"step": 30
},
{
"epoch": 0.25675675675675674,
"eval_accuracy": 0.37142857142857144,
"eval_loss": 1.8028706312179565,
"eval_runtime": 19.014,
"eval_samples_per_second": 3.682,
"eval_steps_per_second": 0.473,
"step": 38
},
{
"epoch": 1.0135135135135136,
"grad_norm": 11.592523574829102,
"learning_rate": 4.0601503759398494e-05,
"loss": 1.9043,
"step": 40
},
{
"epoch": 1.0810810810810811,
"grad_norm": 12.86607837677002,
"learning_rate": 3.6842105263157895e-05,
"loss": 1.4526,
"step": 50
},
{
"epoch": 1.1486486486486487,
"grad_norm": 14.736044883728027,
"learning_rate": 3.3082706766917295e-05,
"loss": 1.1666,
"step": 60
},
{
"epoch": 1.2162162162162162,
"grad_norm": 5.918353080749512,
"learning_rate": 2.9323308270676693e-05,
"loss": 0.7321,
"step": 70
},
{
"epoch": 1.2567567567567568,
"eval_accuracy": 0.7142857142857143,
"eval_loss": 0.8727054595947266,
"eval_runtime": 17.421,
"eval_samples_per_second": 4.018,
"eval_steps_per_second": 0.517,
"step": 76
},
{
"epoch": 2.027027027027027,
"grad_norm": 3.5464766025543213,
"learning_rate": 2.556390977443609e-05,
"loss": 0.715,
"step": 80
},
{
"epoch": 2.0945945945945947,
"grad_norm": 5.991497993469238,
"learning_rate": 2.1804511278195487e-05,
"loss": 0.4772,
"step": 90
},
{
"epoch": 2.1621621621621623,
"grad_norm": 8.718830108642578,
"learning_rate": 1.8045112781954888e-05,
"loss": 0.4527,
"step": 100
},
{
"epoch": 2.22972972972973,
"grad_norm": 10.448086738586426,
"learning_rate": 1.4285714285714285e-05,
"loss": 0.3346,
"step": 110
},
{
"epoch": 2.2567567567567566,
"eval_accuracy": 0.9285714285714286,
"eval_loss": 0.4104200601577759,
"eval_runtime": 18.5415,
"eval_samples_per_second": 3.775,
"eval_steps_per_second": 0.485,
"step": 114
},
{
"epoch": 3.0405405405405403,
"grad_norm": 3.4645307064056396,
"learning_rate": 1.0526315789473684e-05,
"loss": 0.2789,
"step": 120
},
{
"epoch": 3.108108108108108,
"grad_norm": 5.113824844360352,
"learning_rate": 6.766917293233083e-06,
"loss": 0.2264,
"step": 130
},
{
"epoch": 3.175675675675676,
"grad_norm": 9.161781311035156,
"learning_rate": 3.007518796992481e-06,
"loss": 0.2422,
"step": 140
},
{
"epoch": 3.22972972972973,
"eval_accuracy": 0.8857142857142857,
"eval_loss": 0.32087382674217224,
"eval_runtime": 20.1691,
"eval_samples_per_second": 3.471,
"eval_steps_per_second": 0.446,
"step": 148
},
{
"epoch": 3.22972972972973,
"step": 148,
"total_flos": 1.460491890402263e+18,
"train_loss": 0.998315043546058,
"train_runtime": 1775.8681,
"train_samples_per_second": 0.667,
"train_steps_per_second": 0.083
},
{
"epoch": 3.22972972972973,
"eval_accuracy": 0.8258064516129032,
"eval_loss": 0.4799688160419464,
"eval_runtime": 37.9025,
"eval_samples_per_second": 4.089,
"eval_steps_per_second": 0.528,
"step": 148
},
{
"epoch": 3.22972972972973,
"eval_accuracy": 0.8258064516129032,
"eval_loss": 0.4799688458442688,
"eval_runtime": 38.676,
"eval_samples_per_second": 4.008,
"eval_steps_per_second": 0.517,
"step": 148
}
],
"logging_steps": 10,
"max_steps": 148,
"num_input_tokens_seen": 0,
"num_train_epochs": 9223372036854775807,
"save_steps": 500,
"stateful_callbacks": {
"TrainerControl": {
"args": {
"should_epoch_stop": false,
"should_evaluate": false,
"should_log": false,
"should_save": true,
"should_training_stop": true
},
"attributes": {}
}
},
"total_flos": 1.460491890402263e+18,
"train_batch_size": 8,
"trial_name": null,
"trial_params": null
}