Update README.md
Browse files
README.md
CHANGED
|
@@ -4,4 +4,201 @@ datasets:
|
|
| 4 |
- ShaoRun/RS-EoT-4K
|
| 5 |
base_model:
|
| 6 |
- Qwen/Qwen2.5-VL-7B-Instruct
|
| 7 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
- ShaoRun/RS-EoT-4K
|
| 5 |
base_model:
|
| 6 |
- Qwen/Qwen2.5-VL-7B-Instruct
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# RS-EoT-7B: Remote Sensing Evidence-of-Thought
|
| 10 |
+
|
| 11 |
+
<div align="center">
|
| 12 |
+
|
| 13 |
+
[**π Project Website**](coming_soon) | [**π» GitHub Repository**](coming_soon) | [**π Paper (ArXiv)**](coming_soon) | [**π€ Dataset (RS-EoT-4K)**](https://huggingface.co/datasets/ShaoRun/RS-EoT-4K)
|
| 14 |
+
|
| 15 |
+
</div>
|
| 16 |
+
|
| 17 |
+
## π Introduction
|
| 18 |
+
|
| 19 |
+
**RS-EoT-7B** is a multimodal reasoning model tailored for Remote Sensing (RS) imagery. It introduces the **Evidence-of-Thought (EoT)** paradigm to mitigate the "Glance Effect"βa phenomenon where models hallucinate reasoning without genuinely inspecting visual evidence.
|
| 20 |
+
|
| 21 |
+
Unlike standard VLMs that rely on a single coarse perception, RS-EoT-7B employs an iterative evidence-seeking mechanism. It has been trained using a two-stage pipeline:
|
| 22 |
+
1. **SFT Cold-Start**: Supervised Fine-Tuning on the **RS-EoT-4K** dataset (synthesized via SocraticAgent) to instill the iterative reasoning pattern.
|
| 23 |
+
2. **Progressive RL**: Reinforcement Learning on Fine-grained Grounding and General VQA tasks to enhance evidence-seeking capabilities and generalize to broader scenarios.
|
| 24 |
+
|
| 25 |
+
## π οΈ Quick Start
|
| 26 |
+
|
| 27 |
+
### Installation
|
| 28 |
+
|
| 29 |
+
Ensure you have the latest `transformers` and `qwen-vl-utils` installed:
|
| 30 |
+
|
| 31 |
+
```bash
|
| 32 |
+
pip install transformers
|
| 33 |
+
pip install qwen-vl-utils
|
| 34 |
+
````
|
| 35 |
+
|
| 36 |
+
### 1\. Visual Question Answering (VQA)
|
| 37 |
+
|
| 38 |
+
This example demonstrates how to ask the model a question and receive a reasoning-backed answer.
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 42 |
+
from qwen_vl_utils import process_vision_info
|
| 43 |
+
import torch
|
| 44 |
+
|
| 45 |
+
# Load model and processor
|
| 46 |
+
model_name = "ShaoRun/RS-EoT-7B"
|
| 47 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 48 |
+
model_name, torch_dtype="auto", device_map="auto"
|
| 49 |
+
)
|
| 50 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 51 |
+
|
| 52 |
+
# Define input image (assumes demo.jpg is in the current directory)
|
| 53 |
+
image_path = "./demo.jpg"
|
| 54 |
+
|
| 55 |
+
messages = [
|
| 56 |
+
{
|
| 57 |
+
"role": "user",
|
| 58 |
+
"content": [
|
| 59 |
+
{"type": "image", "image": image_path},
|
| 60 |
+
{"type": "text", "text": "How many cars in this image?"},
|
| 61 |
+
],
|
| 62 |
+
}
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
# Preparation for inference
|
| 66 |
+
text = processor.apply_chat_template(
|
| 67 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 68 |
+
)
|
| 69 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 70 |
+
inputs = processor(
|
| 71 |
+
text=[text],
|
| 72 |
+
images=image_inputs,
|
| 73 |
+
videos=video_inputs,
|
| 74 |
+
padding=True,
|
| 75 |
+
return_tensors="pt",
|
| 76 |
+
)
|
| 77 |
+
inputs = inputs.to("cuda")
|
| 78 |
+
|
| 79 |
+
# Inference
|
| 80 |
+
generated_ids = model.generate(**inputs, max_new_tokens=4096)
|
| 81 |
+
generated_ids_trimmed = [
|
| 82 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 83 |
+
]
|
| 84 |
+
output_text = processor.batch_decode(
|
| 85 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
print(output_text[0])
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
### 2\. Visual Grounding with Visualization
|
| 92 |
+
|
| 93 |
+
This example shows how to perform visual grounding and visualize the output bounding boxes.
|
| 94 |
+
|
| 95 |
+
```python
|
| 96 |
+
import re
|
| 97 |
+
import torch
|
| 98 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 99 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 100 |
+
from qwen_vl_utils import process_vision_info
|
| 101 |
+
|
| 102 |
+
# --- Helper Functions for Parsing and Visualization ---
|
| 103 |
+
|
| 104 |
+
def extract_bbox_list_in(text: str) -> list[list[float]]:
|
| 105 |
+
"""Extracts bounding boxes from the model output text."""
|
| 106 |
+
boxes = []
|
| 107 |
+
text = re.sub(r'\\([{}\[\]":,])', r'\1', text)
|
| 108 |
+
# Pattern to find lists of numbers like [x1, y1, x2, y2]
|
| 109 |
+
pattern = re.compile(r'\[\s*(.*?)\s*\]', flags=re.IGNORECASE | re.DOTALL)
|
| 110 |
+
matches = pattern.findall(text)
|
| 111 |
+
|
| 112 |
+
number_pattern = r'-?\d+\.\d+|-?\d+'
|
| 113 |
+
for match in matches:
|
| 114 |
+
nums = re.findall(number_pattern, match)
|
| 115 |
+
if len(nums) >= 4:
|
| 116 |
+
# Take the first 4 numbers as the box
|
| 117 |
+
box = [float(num) for num in nums[:4]]
|
| 118 |
+
boxes.append(box)
|
| 119 |
+
return boxes
|
| 120 |
+
|
| 121 |
+
def visualize_bboxes(img: Image.Image, boxes: list[list[float]], color=(0, 255, 0), width=3) -> Image.Image:
|
| 122 |
+
"""Draws bounding boxes on the image."""
|
| 123 |
+
out = img.copy()
|
| 124 |
+
draw = ImageDraw.Draw(out)
|
| 125 |
+
W, H = img.size
|
| 126 |
+
|
| 127 |
+
for b in boxes:
|
| 128 |
+
if len(b) < 4: continue
|
| 129 |
+
x1, y1, x2, y2 = b[:4]
|
| 130 |
+
|
| 131 |
+
# Ensure coordinates are within bounds
|
| 132 |
+
x1, y1 = max(0, min(W-1, x1)), max(0, min(H-1, y1))
|
| 133 |
+
x2, y2 = max(0, min(W-1, x2)), max(0, min(H-1, y2))
|
| 134 |
+
|
| 135 |
+
# Draw rectangle with thickness
|
| 136 |
+
draw.rectangle([x1, y1, x2, y2], outline=color, width=width)
|
| 137 |
+
|
| 138 |
+
return out
|
| 139 |
+
|
| 140 |
+
# --- Main Inference Code ---
|
| 141 |
+
|
| 142 |
+
model_name = "ShaoRun/RS-EoT-7B"
|
| 143 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 144 |
+
model_name, torch_dtype="auto", device_map="auto"
|
| 145 |
+
)
|
| 146 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 147 |
+
|
| 148 |
+
# Load Image
|
| 149 |
+
image_path = "./demo.jpg"
|
| 150 |
+
image = Image.open(image_path).convert('RGB')
|
| 151 |
+
|
| 152 |
+
messages = [
|
| 153 |
+
{
|
| 154 |
+
"role": "user",
|
| 155 |
+
"content": [
|
| 156 |
+
{"type": "image", "image": image},
|
| 157 |
+
{"type": "text", "text": 'Locate the black car parked on the right in the remote sensing image. Return the coordinates as "[x1, y1, x2, y2]".'},
|
| 158 |
+
],
|
| 159 |
+
}
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
# Process Inputs
|
| 163 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 164 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 165 |
+
inputs = processor(
|
| 166 |
+
text=[text],
|
| 167 |
+
images=image_inputs,
|
| 168 |
+
videos=video_inputs,
|
| 169 |
+
padding=True,
|
| 170 |
+
return_tensors="pt",
|
| 171 |
+
)
|
| 172 |
+
inputs = inputs.to("cuda")
|
| 173 |
+
|
| 174 |
+
# Generate
|
| 175 |
+
generated_ids = model.generate(**inputs, max_new_tokens=4096)
|
| 176 |
+
generated_ids_trimmed = [
|
| 177 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 178 |
+
]
|
| 179 |
+
response = processor.batch_decode(
|
| 180 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 181 |
+
)[0]
|
| 182 |
+
|
| 183 |
+
print(f"Model Response:\n{response}")
|
| 184 |
+
|
| 185 |
+
# Parse and Visualize
|
| 186 |
+
answer_part = response.split("</think>")[-1]
|
| 187 |
+
detection = extract_bbox_list_in(answer_part)
|
| 188 |
+
|
| 189 |
+
if detection:
|
| 190 |
+
print(f"Detected BBoxes: {detection}")
|
| 191 |
+
vis_img = visualize_bboxes(image, detection)
|
| 192 |
+
vis_img.save("./res.jpg")
|
| 193 |
+
print("Visualization saved to ./res.jpg")
|
| 194 |
+
else:
|
| 195 |
+
print("No bounding boxes detected in the response.")
|
| 196 |
+
```
|
| 197 |
+
|
| 198 |
+
## ποΈ Citation
|
| 199 |
+
|
| 200 |
+
If you use this model in your research, please cite our paper:
|
| 201 |
+
|
| 202 |
+
```bibtex
|
| 203 |
+
coming soon
|
| 204 |
+
```
|