Commit
·
18c93de
1
Parent(s):
5ea5368
Upload evaluation.py
Browse files- evaluation.py +174 -0
evaluation.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from evaluate import load as load_metric
|
| 5 |
+
|
| 6 |
+
from sklearn.metrics import accuracy_score, f1_score
|
| 7 |
+
from tqdm.auto import tqdm
|
| 8 |
+
|
| 9 |
+
MAX_TARGET_LENGTH = 128
|
| 10 |
+
|
| 11 |
+
# load evaluation metrics
|
| 12 |
+
sacrebleu = load_metric('sacrebleu')
|
| 13 |
+
rouge = load_metric('rouge')
|
| 14 |
+
meteor = load_metric('meteor')
|
| 15 |
+
bertscore = load_metric('bertscore')
|
| 16 |
+
|
| 17 |
+
# use gpu if it's available
|
| 18 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 19 |
+
|
| 20 |
+
def flatten_list(l):
|
| 21 |
+
"""
|
| 22 |
+
Utility function to convert a list of lists into a flattened list
|
| 23 |
+
|
| 24 |
+
Params:
|
| 25 |
+
l (list of lists): list to be flattened
|
| 26 |
+
Returns:
|
| 27 |
+
A flattened list with the elements of the original list
|
| 28 |
+
"""
|
| 29 |
+
return [item for sublist in l for item in sublist]
|
| 30 |
+
|
| 31 |
+
def extract_feedback(predictions):
|
| 32 |
+
"""
|
| 33 |
+
Utility function to extract the feedback from the predictions of the model
|
| 34 |
+
|
| 35 |
+
Params:
|
| 36 |
+
predictions (list): complete model predictions
|
| 37 |
+
Returns:
|
| 38 |
+
feedback (list): extracted feedback from the model's predictions
|
| 39 |
+
"""
|
| 40 |
+
feedback = []
|
| 41 |
+
# iterate through predictions and try to extract predicted feedback
|
| 42 |
+
for pred in predictions:
|
| 43 |
+
try:
|
| 44 |
+
fb = pred.split(':', 1)[1]
|
| 45 |
+
except IndexError:
|
| 46 |
+
try:
|
| 47 |
+
if pred.lower().startswith('partially correct'):
|
| 48 |
+
fb = pred.split(' ', 1)[2]
|
| 49 |
+
else:
|
| 50 |
+
fb = pred.split(' ', 1)[1]
|
| 51 |
+
except IndexError:
|
| 52 |
+
fb = pred
|
| 53 |
+
feedback.append(fb.strip())
|
| 54 |
+
|
| 55 |
+
return feedback
|
| 56 |
+
|
| 57 |
+
def extract_labels(predictions):
|
| 58 |
+
"""
|
| 59 |
+
Utility function to extract the labels from the predictions of the model
|
| 60 |
+
|
| 61 |
+
Params:
|
| 62 |
+
predictions (list): complete model predictions
|
| 63 |
+
Returns:
|
| 64 |
+
feedback (list): extracted labels from the model's predictions
|
| 65 |
+
"""
|
| 66 |
+
labels = []
|
| 67 |
+
for pred in predictions:
|
| 68 |
+
if pred.lower().startswith('correct'):
|
| 69 |
+
label = 'Correct'
|
| 70 |
+
elif pred.lower().startswith('partially correct'):
|
| 71 |
+
label = 'Partially correct'
|
| 72 |
+
elif pred.lower().startswith('incorrect'):
|
| 73 |
+
label = 'Incorrect'
|
| 74 |
+
else:
|
| 75 |
+
label = 'Unknown label'
|
| 76 |
+
labels.append(label)
|
| 77 |
+
|
| 78 |
+
return labels
|
| 79 |
+
|
| 80 |
+
def compute_metrics(predictions, labels):
|
| 81 |
+
"""
|
| 82 |
+
Compute evaluation metrics from the predictions of the model
|
| 83 |
+
|
| 84 |
+
Params:
|
| 85 |
+
predictions (list): complete model predictions
|
| 86 |
+
labels (list): golden labels (previously tokenized)
|
| 87 |
+
Returns:
|
| 88 |
+
results (dict): dictionary with the computed evaluation metrics
|
| 89 |
+
predictions (list): list of the decoded predictions of the model
|
| 90 |
+
"""
|
| 91 |
+
# extract feedback and labels from the model's predictions
|
| 92 |
+
predicted_feedback = extract_feedback(predictions)
|
| 93 |
+
predicted_labels = extract_labels(predictions)
|
| 94 |
+
|
| 95 |
+
# extract feedback and labels from the golden labels
|
| 96 |
+
reference_feedback = [x.split('Feedback:', 1)[1].strip() for x in labels]
|
| 97 |
+
reference_labels = [x.split('Feedback:', 1)[0].strip() for x in labels]
|
| 98 |
+
|
| 99 |
+
# compute HF metrics
|
| 100 |
+
sacrebleu_score = sacrebleu.compute(predictions=predicted_feedback, references=[[x] for x in reference_feedback])['score']
|
| 101 |
+
rouge_score = rouge.compute(predictions=predicted_feedback, references=reference_feedback)['rouge2']
|
| 102 |
+
meteor_score = meteor.compute(predictions=predicted_feedback, references=reference_feedback)['meteor']
|
| 103 |
+
bert_score = bertscore.compute(
|
| 104 |
+
predictions=predicted_feedback,
|
| 105 |
+
references=reference_feedback,
|
| 106 |
+
lang='de',
|
| 107 |
+
model_type='bert-base-multilingual-cased',
|
| 108 |
+
rescale_with_baseline=True)
|
| 109 |
+
|
| 110 |
+
# use sklearn to compute accuracy and f1 score
|
| 111 |
+
reference_labels_np = np.array(reference_labels)
|
| 112 |
+
accuracy = accuracy_score(reference_labels_np, predicted_labels)
|
| 113 |
+
f1_weighted = f1_score(reference_labels_np, predicted_labels, average='weighted')
|
| 114 |
+
f1_macro = f1_score(
|
| 115 |
+
reference_labels_np,
|
| 116 |
+
predicted_labels,
|
| 117 |
+
average='macro',
|
| 118 |
+
labels=['Incorrect', 'Partially correct', 'Correct'])
|
| 119 |
+
|
| 120 |
+
results = {
|
| 121 |
+
'sacrebleu': sacrebleu_score,
|
| 122 |
+
'rouge': rouge_score,
|
| 123 |
+
'meteor': meteor_score,
|
| 124 |
+
'bert_score': np.array(bert_score['f1']).mean().item(),
|
| 125 |
+
'accuracy': accuracy,
|
| 126 |
+
'f1_weighted': f1_weighted,
|
| 127 |
+
'f1_macro': f1_macro
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
return results
|
| 131 |
+
|
| 132 |
+
def evaluate(model, tokenizer, dataloader):
|
| 133 |
+
"""
|
| 134 |
+
Evaluate model on the given dataset
|
| 135 |
+
|
| 136 |
+
Params:
|
| 137 |
+
model (PreTrainedModel): seq2seq model
|
| 138 |
+
tokenizer (PreTrainedTokenizer): tokenizer from HuggingFace
|
| 139 |
+
dataloader (torch Dataloader): dataloader of the dataset to be used for evaluation
|
| 140 |
+
Returns:
|
| 141 |
+
results (dict): dictionary with the computed evaluation metrics
|
| 142 |
+
predictions (list): list of the decoded predictions of the model
|
| 143 |
+
"""
|
| 144 |
+
decoded_preds, decoded_labels = [], []
|
| 145 |
+
|
| 146 |
+
model.eval()
|
| 147 |
+
# iterate through batchs in the dataloader
|
| 148 |
+
for batch in tqdm(dataloader):
|
| 149 |
+
with torch.no_grad():
|
| 150 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
| 151 |
+
# generate tokens from batch
|
| 152 |
+
generated_tokens = model.generate(
|
| 153 |
+
batch['input_ids'],
|
| 154 |
+
attention_mask=batch['attention_mask'],
|
| 155 |
+
max_length=MAX_TARGET_LENGTH
|
| 156 |
+
)
|
| 157 |
+
# get golden labels from batch
|
| 158 |
+
labels_batch = batch['labels']
|
| 159 |
+
|
| 160 |
+
# decode model predictions and golden labels
|
| 161 |
+
decoded_preds_batch = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
| 162 |
+
decoded_labels_batch = tokenizer.batch_decode(labels_batch, skip_special_tokens=True)
|
| 163 |
+
|
| 164 |
+
decoded_preds.append(decoded_preds_batch)
|
| 165 |
+
decoded_labels.append(decoded_labels_batch)
|
| 166 |
+
|
| 167 |
+
# convert predictions and golden labels into flattened lists
|
| 168 |
+
predictions = flatten_list(decoded_preds)
|
| 169 |
+
labels = flatten_list(decoded_labels)
|
| 170 |
+
|
| 171 |
+
# compute metrics based on predictions and golden labels
|
| 172 |
+
results = compute_metrics(predictions, labels)
|
| 173 |
+
|
| 174 |
+
return results, predictions
|