--- license: apache-2.0 library_name: transformers language: - en tags: - code - software-engineering - testing - unit-tests - r2e-gym - swe-bench base_model: Qwen/Qwen2.5-Coder-32B-Instruct datasets: - R2E-Gym/R2EGym-TestingAgent-SFT-Trajectories model_type: qwen2 --- # R2E-TestgenAgent A specialized execution-based testing agent for generating targeted unit tests in software engineering tasks. ## Model Details - **Model Type**: Qwen2.5-Coder-32B fine-tuned for test generation - **Training Data**: R2E-Gym SFT trajectories for testing tasks - **Use Case**: Automated unit test generation for software engineering - **Framework**: R2E-Gym ecosystem ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "r2e-gym/R2E-TestgenAgent" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Use with R2E-Gym framework for best results from r2egym.agenthub.agent.agent import Agent, AgentArgs agent_args = AgentArgs.from_yaml("testing_agent_config.yaml") agent = Agent(name="TestingAgent", args=agent_args) ``` ## Training - **Base Model**: Qwen/Qwen2.5-Coder-32B-Instruct - **Training Method**: Full fine-tuning with DeepSpeed - **Learning Rate**: 1e-5 - **Epochs**: 2 - **Context Length**: 20,480 tokens ## Citation ```bibtex @article{jain2025r2e, title={R2e-gym: Procedural environments and hybrid verifiers for scaling open-weights swe agents}, author={Jain, Naman and Singh, Jaskirat and Shetty, Manish and Zheng, Liang and Sen, Koushik and Stoica, Ion}, journal={arXiv preprint arXiv:2504.07164}, year={2025} } ```