Update README.md
Browse files
README.md
CHANGED
|
@@ -1,21 +1,32 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
-
|
| 6 |
-
- unsloth
|
| 7 |
-
- qwen3
|
| 8 |
-
license: apache-2.0
|
| 9 |
-
language:
|
| 10 |
-
- en
|
| 11 |
---
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
| 16 |
-
- **License:** apache-2.0
|
| 17 |
-
- **Finetuned from model :** nvidia/Nemotron-Orchestrator-8B
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
datasets:
|
| 3 |
+
- TeichAI/claude-4.5-opus-high-reasoning-250x
|
| 4 |
+
base_model:
|
| 5 |
+
- unsloth/Qwen3-8B-unsloth-bnb-4bit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
---
|
| 7 |
+
# Nemotron Orchestrator 8B x Claude 4.5 Opus (High Reasoning) Distill
|
| 8 |
|
| 9 |
+
This model was trained on a **Claude Opus 4.5 (reasoning)** dataset with a high reasoning effort.
|
| 10 |
|
| 11 |
+
You are viewing the safetensors variant of this model, a quantized gguf variant is available here: [TeichAI/Nemotron-Orchestrator-8B-Claude-4.5-Opus-Distill-GGUF](https://huggingface.co/TeichAI/Nemotron-Orchestrator-8B-Claude-4.5-Opus-Distill-GGUF)
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
- 🤖 Related Models:
|
| 14 |
+
| Model | Effective parameters | Active parameters |
|
| 15 |
+
| ------------- | ------------- | ------------- |
|
| 16 |
+
| [`Qwen3-8B-Claude-4.5-Opus-High-Reasoning-Distill`](https://huggingface.co/TeichAI/Qwen3-8B-Claude-4.5-Opus-High-Reasoning-Distill) | 8 B | 8 B |
|
| 17 |
+
| [`Qwen3-4B-Thinking-2507-Claude-4.5-Opus-High-Reasoning-Distill`](https://huggingface.co/TeichAI/Qwen3-4B-Thinking-2507-Claude-4.5-Opus-High-Reasoning-Distill) | 4 B | 4 B |
|
| 18 |
|
| 19 |
+
- 🧬 Datasets:
|
| 20 |
+
- `TeichAI/claude-4.5-opus-high-reasoning-250x`
|
| 21 |
+
|
| 22 |
+
- 🏗 Base Model:
|
| 23 |
+
- `unsloth/Qwen3-8B-unsloth-bnb-4bit`
|
| 24 |
+
|
| 25 |
+
- ⚡ Use cases:
|
| 26 |
+
- Coding
|
| 27 |
+
- Science
|
| 28 |
+
- General Purpose
|
| 29 |
+
|
| 30 |
+
- ∑ Stats (Dataset)
|
| 31 |
+
- Costs: $ 52.3 (USD)
|
| 32 |
+
- Total tokens (input + output): 2.13 M
|