--- library_name: transformers license: other base_model: google/medsiglip-448 tags: - generated_from_trainer model-index: - name: medsiglip-448-ft-crc100k results: [] --- # medsiglip-448-ft-crc100k This model is a fine-tuned version of [google/medsiglip-448](https://huggingface.co/google/medsiglip-448) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.4835 | 0.3094 | 50 | 1.6561 | | 1.2918 | 0.6187 | 100 | 1.2015 | | 1.1399 | 0.9281 | 150 | 1.1764 | | 1.0881 | 1.2351 | 200 | 1.1594 | | 1.1221 | 1.5445 | 250 | 1.1659 | | 1.0781 | 1.8538 | 300 | 1.1377 | | 1.0854 | 2.1609 | 350 | 1.1528 | | 1.0849 | 2.4702 | 400 | 1.1304 | | 1.0537 | 2.7796 | 450 | 1.1472 | | 1.0851 | 3.0866 | 500 | 1.1253 | | 1.0725 | 3.3960 | 550 | 1.1166 | | 1.0639 | 3.7053 | 600 | 1.1616 | | 1.0308 | 4.0124 | 650 | 1.1127 | | 1.0616 | 4.3217 | 700 | 1.1094 | | 1.0225 | 4.6311 | 750 | 1.1327 | | 1.0066 | 4.9404 | 800 | 1.1188 | | 1.009 | 5.2475 | 850 | 1.1141 | | 1.0608 | 5.5568 | 900 | 1.1366 | | 1.0516 | 5.8662 | 950 | 1.1308 | | 1.0289 | 6.1732 | 1000 | 1.1256 | | 1.1054 | 6.4826 | 1050 | 1.1159 | | 1.025 | 6.7920 | 1100 | 1.1071 | | 1.0376 | 7.0990 | 1150 | 1.1271 | | 1.0389 | 7.4084 | 1200 | 1.1187 | | 0.9929 | 7.7177 | 1250 | 1.1130 | | 1.0692 | 8.0247 | 1300 | 1.1123 | | 1.0505 | 8.3341 | 1350 | 1.1023 | | 1.0437 | 8.6435 | 1400 | 1.1082 | | 1.0228 | 8.9528 | 1450 | 1.1056 | | 1.0134 | 9.2599 | 1500 | 1.1092 | | 1.073 | 9.5692 | 1550 | 1.1155 | | 1.0354 | 9.8786 | 1600 | 1.1081 | | 1.0316 | 10.1856 | 1650 | 1.1100 | | 1.0558 | 10.4950 | 1700 | 1.1075 | | 0.9927 | 10.8043 | 1750 | 1.1089 | | 1.0543 | 11.1114 | 1800 | 1.1105 | | 1.0364 | 11.4207 | 1850 | 1.1088 | | 1.0407 | 11.7301 | 1900 | 1.1090 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4