File size: 2,789 Bytes
34e66d1
 
 
 
 
 
 
 
 
 
 
 
 
 
576fc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e66d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: ToastyPigeon/Gemma-3-Starshine-12B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---

# Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF
This model was converted to GGUF format from [`ToastyPigeon/Gemma-3-Starshine-12B`](https://huggingface.co/ToastyPigeon/Gemma-3-Starshine-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ToastyPigeon/Gemma-3-Starshine-12B) for more details on the model.

---
A creative writing model based on a merge of fine-tunes on Gemma 3 12B IT and Gemma 3 12B PT. 

This is the Story Focused merge. This version works 
better for storytelling and scenarios, as the prose is more novel-like 
and it has a tendency to impersonate the user character. 

See the Alternate RP Focused version as well. 

This is a merge of two G3 models, one trained on instruct and one trained on base: 

- allura-org/Gemma-3-Glitter-12B - Itself a merge of a storywriting and RP train (both also by ToastyPigeon), on instruct

- ToastyPigeon/Gemma-3-Confetti-12B - Experimental application of the Glitter data using base instead of 
instruct, additionally includes some adventure data in the form of 
SpringDragon.

The result is a lovely blend of Glitter's ability to follow 
instructions and Confetti's free-spirit prose, effectively 'loosening 
up' much of the hesitancy that was left in Glitter. 

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF --hf-file gemma-3-starshine-12b-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF --hf-file gemma-3-starshine-12b-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF --hf-file gemma-3-starshine-12b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Gemma-3-Starshine-12B-Q4_K_M-GGUF --hf-file gemma-3-starshine-12b-q4_k_m.gguf -c 2048
```