File size: 3,930 Bytes
3946de7
 
 
bdec26b
 
 
 
 
 
 
 
3946de7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0572ee4
 
 
 
 
 
 
3946de7
ee8a3ee
3946de7
 
 
 
 
bdec26b
 
4cacacd
f6e6753
3946de7
 
 
 
 
 
 
 
 
 
 
 
 
 
ff717b9
3946de7
 
 
efb41ef
3946de7
 
 
cd85cfc
bdec26b
 
efb41ef
bdec26b
 
 
efb41ef
bdec26b
 
 
 
 
 
 
3946de7
 
bdec26b
 
3946de7
 
 
 
 
 
 
 
 
 
 
 
 
bdec26b
 
cd85cfc
efb41ef
bdec26b
 
 
3946de7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info

def read_json(file_path): 
    with open(file_path, 'r', encoding='utf-8') as file:
        data = json.load(file)
    return data

def write_json(file_path, data):
    with open(file_path, 'w', encoding='utf-8') as file:
        json.dump(data, file, ensure_ascii=False, indent=4)

# default: Load the model on the available device(s)
model_path = '/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/models/QVQ-72B-Preview'
model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_path, torch_dtype="auto", device_map="auto"
)

# default processer
processor = AutoProcessor.from_pretrained(model_path)

# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
#processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview", min_pixels=min_pixels, max_pixels=max_pixels)

import glob
from PIL import Image
import argparse

parser = argparse.ArgumentParser(description="Process a dataset with specific index range.")
parser.add_argument("--batch_size", type=int, default = 1,help="batch size")
#parser.add_argument("--index", type=int, default = 0,help="index")
args = parser.parse_args()


folder = "/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/dataset"

images = []
for img_path in glob.glob(f"{folder}/*.jpe"):
    img = Image.open(img_path)
    images.append(img)

num_image = len(images)
print(f"beigin : {begin}, end : {end}, batch_size : {batch_size}")
begin, end, batch_size= 0, 10, args.batch_size
messages = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
        ],
    },
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/QVQ/demo.png",
            },
            {"type": "text", "text": "Please describe in detail the content of the picture."},
        ],
    }
]

from tqdm import tqdm
# Preparation for inference
ans = []
counter = 0
for batch_idx in tqdm(range(begin, end, batch_size)):
    batch = data[batch_idx: min(batch_idx + batch_size, end)]
    print(f"data index range : {batch_idx} ~ {min(batch_idx + batch_size, end)}")
    image_inputs_batch, video_inputs_batch = [], []
    for idx,i in enumerate(batch):
        img = images[i]
        print('gain image successfully !')
        messages[1]["content"][0]["image"] = img
        text = processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        image_inputs, video_inputs = process_vision_info(messages)
        image_inputs_batch.append(image_inputs)
        video_inputs_batch.append(video_inputs)
    inputs = processor(
        text=[text],
        images=image_inputs_batch,
        videos=video_inputs_batch,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")

    # Inference: Generation of the output
    generated_ids = model.generate(**inputs, max_new_tokens=8192)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    #ans.append(output_text)
    save_path = "output.json"
    counter = counter + 1
    if counter % 1 == 0:
        print(f"Saving data at iteration {idx + 1}")
        write_json(save_path, data)