Upload infer_qwen2_vl.py with huggingface_hub
Browse files- infer_qwen2_vl.py +20 -8
infer_qwen2_vl.py
CHANGED
|
@@ -91,18 +91,30 @@ for batch_idx in tqdm(range(begin, end, batch_size)):
|
|
| 91 |
inputs = inputs.to("cuda")
|
| 92 |
|
| 93 |
# Inference: Generation of the output
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
#ans.append(output_text)
|
| 102 |
save_path = "output.json"
|
| 103 |
counter = counter + 1
|
| 104 |
if counter % 1 == 0:
|
| 105 |
print(f"Saving data at iteration {idx + 1}")
|
| 106 |
-
write_json(save_path,
|
| 107 |
|
| 108 |
|
|
|
|
| 91 |
inputs = inputs.to("cuda")
|
| 92 |
|
| 93 |
# Inference: Generation of the output
|
| 94 |
+
ans = []
|
| 95 |
+
for x in range(len(inputs)):
|
| 96 |
+
print(f"Generating {x}th image")
|
| 97 |
+
generated_ids = model.generate(**x, max_new_tokens=8192)
|
| 98 |
+
generated_ids_trimmed = [
|
| 99 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(x.input_ids, generated_ids)
|
| 100 |
+
]
|
| 101 |
+
output_text = processor.batch_decode(
|
| 102 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
| 103 |
+
)
|
| 104 |
+
ans.append(output_text)
|
| 105 |
+
|
| 106 |
+
# generated_ids = model.generate(**inputs, max_new_tokens=8192)
|
| 107 |
+
# generated_ids_trimmed = [
|
| 108 |
+
# out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 109 |
+
# ]
|
| 110 |
+
# output_text = processor.batch_decode(
|
| 111 |
+
# generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 112 |
+
# )
|
| 113 |
#ans.append(output_text)
|
| 114 |
save_path = "output.json"
|
| 115 |
counter = counter + 1
|
| 116 |
if counter % 1 == 0:
|
| 117 |
print(f"Saving data at iteration {idx + 1}")
|
| 118 |
+
write_json(save_path, ans)
|
| 119 |
|
| 120 |
|