Wendy-Fly commited on
Commit
b23d644
·
verified ·
1 Parent(s): beee7f3

Upload mgie.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. mgie.py +121 -0
mgie.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from tqdm.auto import tqdm
4
+
5
+ from PIL import Image
6
+
7
+ import torch as T
8
+ import transformers, diffusers
9
+
10
+ from llava.conversation import conv_templates
11
+ from llava.model import *
12
+
13
+
14
+ def read_json(file_path):
15
+ with open(file_path, 'r', encoding='utf-8') as file:
16
+ data = json.load(file)
17
+ return data
18
+
19
+ def write_json(file_path, data):
20
+ with open(file_path, 'w', encoding='utf-8') as file:
21
+ json.dump(data, file, ensure_ascii=False, indent=4)
22
+
23
+ def crop_resize(f, sz=512):
24
+ w, h = f.size
25
+ if w>h:
26
+ p = (w-h)//2
27
+ f = f.crop([p, 0, p+h, h])
28
+ elif h>w:
29
+ p = (h-w)//2
30
+ f = f.crop([0, p, w, p+w])
31
+ f = f.resize([sz, sz])
32
+ return f
33
+ def remove_alter(s): # hack expressive instruction
34
+ if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:')+10:].strip()
35
+ if '</s>' in s: s = s[:s.index('</s>')].strip()
36
+ if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')]
37
+ if '[IMG0]' in s: s = s[:s.index('[IMG0]')]
38
+ s = '.'.join([s.strip() for s in s.split('.')[:2]])
39
+ if s[-1]!='.': s += '.'
40
+ return s.strip()
41
+
42
+
43
+ DEFAULT_IMAGE_TOKEN = '<image>'
44
+ DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>'
45
+ DEFAULT_IM_START_TOKEN = '<im_start>'
46
+ DEFAULT_IM_END_TOKEN = '<im_end>'
47
+ PATH_LLAVA = './_ckpt/LLaVA-7B-v1'
48
+
49
+ tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
50
+ model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda()
51
+ image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=T.float16)
52
+
53
+ tokenizer.padding_side = 'left'
54
+ tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
55
+ model.resize_token_embeddings(len(tokenizer))
56
+ ckpt = T.load('./_ckpt/mgie_7b/mllm.pt', map_location='cpu')
57
+ model.load_state_dict(ckpt, strict=False)
58
+
59
+ mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False)
60
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
61
+ if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
62
+
63
+ vision_tower = model.get_model().vision_tower[0]
64
+ vision_tower = transformers.CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=T.float16, low_cpu_mem_usage=True).cuda()
65
+ model.get_model().vision_tower[0] = vision_tower
66
+ vision_config = vision_tower.config
67
+ vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
68
+ vision_config.use_im_start_end = mm_use_im_start_end
69
+ if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
70
+ image_token_len = (vision_config.image_size//vision_config.patch_size)**2
71
+
72
+ _ = model.eval()
73
+ EMB = ckpt['emb'].cuda()
74
+ with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB)
75
+ print('NULL:', NULL.shape)
76
+
77
+ pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16, safety_checker=None).to('cuda')
78
+ pipe.set_progress_bar_config(disable=True)
79
+ pipe.unet.load_state_dict(T.load('./_ckpt/mgie_7b/unet.pt', map_location='cpu'))
80
+
81
+
82
+ SEED = 13331
83
+
84
+ # ins = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion',
85
+ # 'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast',
86
+ # 'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out',
87
+ # 'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb',
88
+ # 'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood']
89
+
90
+ data_path = '/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/magicbrush_dataset/gen_new.json'
91
+ save_image = '/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/magicbrush_dataset/result_images'
92
+ data = read_json(data_path)
93
+ for i in tqdm(range(2)):
94
+ img_path = data[i]["content"][0]["image"]
95
+ txt = data[i]["result"]
96
+ img = Image.open(img_path)
97
+ img, txt = Image.open('_input/%d.jpg'%(i)).convert('RGB'), ins[i]
98
+
99
+ #img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0]
100
+ txt = "what will this image be like if '%s'"%(txt)
101
+ txt = txt+'\n'+DEFAULT_IM_START_TOKEN+DEFAULT_IMAGE_PATCH_TOKEN*image_token_len+DEFAULT_IM_END_TOKEN
102
+ conv = conv_templates['vicuna_v1_1'].copy()
103
+ conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None)
104
+ txt = conv.get_prompt()
105
+ txt = tokenizer(txt)
106
+ txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask'])
107
+
108
+ with T.inference_mode():
109
+ out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(),
110
+ do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3,
111
+ return_dict_in_generate=True, output_hidden_states=True)
112
+ out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0]
113
+
114
+ p = min(out.index(32003)-1 if 32003 in out else len(hid)-9, len(hid)-9)
115
+ hid = hid[p:p+8]
116
+
117
+ out = remove_alter(tokenizer.decode(out))
118
+ emb = model.edit_head(hid.unsqueeze(dim=0), EMB)
119
+ res = pipe(image=Image.open('_input/%d.jpg'%(i)).convert('RGB'), prompt_embeds=emb, negative_prompt_embeds=NULL, generator=T.Generator(device='cuda').manual_seed(SEED)).images[0]
120
+ save_img_path = os.path.join(save_image, f{i}.png)
121
+ Image.save(save_img_path)