Upload infer_1.py with huggingface_hub
Browse files- infer_1.py +118 -0
infer_1.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 2 |
+
from qwen_vl_utils import process_vision_info
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def read_json(file_path):
|
| 6 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 7 |
+
data = json.load(file)
|
| 8 |
+
return data
|
| 9 |
+
|
| 10 |
+
def write_json(file_path, data):
|
| 11 |
+
with open(file_path, 'w', encoding='utf-8') as file:
|
| 12 |
+
json.dump(data, file, ensure_ascii=False, indent=4)
|
| 13 |
+
|
| 14 |
+
# default: Load the model on the available device(s)
|
| 15 |
+
model_path = "/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/ckpt"
|
| 16 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 17 |
+
model_path, torch_dtype="auto", device_map="auto"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
| 21 |
+
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 22 |
+
# "Qwen/Qwen2.5-VL-7B-Instruct",
|
| 23 |
+
# torch_dtype=torch.bfloat16,
|
| 24 |
+
# attn_implementation="flash_attention_2",
|
| 25 |
+
# device_map="auto",
|
| 26 |
+
# )
|
| 27 |
+
|
| 28 |
+
# default processor
|
| 29 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
data = read_json()
|
| 36 |
+
save_data = []
|
| 37 |
+
correct_num = 0
|
| 38 |
+
begin = 0
|
| 39 |
+
end = len(data)
|
| 40 |
+
batch_size = 4
|
| 41 |
+
for batch_idx in tqdm(range(begin, end, batch_size)):
|
| 42 |
+
batch = data[batch_idx:batch_idx + batch_size]
|
| 43 |
+
|
| 44 |
+
image_list = []
|
| 45 |
+
input_text_list = []
|
| 46 |
+
|
| 47 |
+
# while True:
|
| 48 |
+
for idx, i in enumerate(batch):
|
| 49 |
+
save_ = {
|
| 50 |
+
"role": "user",
|
| 51 |
+
"content": [
|
| 52 |
+
{
|
| 53 |
+
"type": "video",
|
| 54 |
+
"video": "file:///path/to/video1.mp4",
|
| 55 |
+
"max_pixels": 360 * 420,
|
| 56 |
+
"fps": 1.0,
|
| 57 |
+
},
|
| 58 |
+
{"type": "image", "image": "file:///path/to/image2.jpg"},
|
| 59 |
+
{"type": "text", "text": "Describe this video."},
|
| 60 |
+
],
|
| 61 |
+
"answer":""
|
| 62 |
+
}
|
| 63 |
+
messages = {
|
| 64 |
+
"role": "user",
|
| 65 |
+
"content": [
|
| 66 |
+
{
|
| 67 |
+
"type": "video",
|
| 68 |
+
"video": "file:///path/to/video1.mp4",
|
| 69 |
+
"max_pixels": 360 * 420,
|
| 70 |
+
"fps": 1.0,
|
| 71 |
+
},
|
| 72 |
+
{"type": "image", "image": "file:///path/to/image2.jpg"},
|
| 73 |
+
{"type": "text", "text": "Describe this video."},
|
| 74 |
+
],
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
video_path = i['videos']
|
| 79 |
+
image_path = i['images']
|
| 80 |
+
question = i['conversations'][0]['content']
|
| 81 |
+
answer = i['conversations'][1]['content']
|
| 82 |
+
messages['content'][0]['video'] = video_path
|
| 83 |
+
messages['content'][1]['image'] = image_path
|
| 84 |
+
messages['content'][2]['text'] = question
|
| 85 |
+
|
| 86 |
+
save_['content'][0]['video'] = video_path
|
| 87 |
+
save_['content'][1]['image'] = image_path
|
| 88 |
+
save_['content'][2]['text'] = question
|
| 89 |
+
|
| 90 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 91 |
+
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
|
| 92 |
+
inputs = processor(
|
| 93 |
+
text=[text],
|
| 94 |
+
images=image_inputs,
|
| 95 |
+
videos=video_inputs,
|
| 96 |
+
fps=fps,
|
| 97 |
+
padding=True,
|
| 98 |
+
return_tensors="pt",
|
| 99 |
+
**video_kwargs,
|
| 100 |
+
)
|
| 101 |
+
inputs = inputs.to("cuda")
|
| 102 |
+
|
| 103 |
+
# Inference
|
| 104 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 105 |
+
generated_ids_trimmed = [
|
| 106 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 107 |
+
]
|
| 108 |
+
output_text = processor.batch_decode(
|
| 109 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 110 |
+
)
|
| 111 |
+
save_["answer"] = output_text
|
| 112 |
+
if output_text == answer:
|
| 113 |
+
correct_num = correct_num + 1
|
| 114 |
+
save_data.append(save_)
|
| 115 |
+
|
| 116 |
+
write_json(save_data, "infer_answer.json")
|
| 117 |
+
|
| 118 |
+
|