See axolotl config
axolotl version: 0.13.0.dev0
# === Model Configuration ===
base_model: ibm-granite/granite-4.0-h-tiny
load_in_8bit: false
load_in_4bit: false
# === Training Setup ===
num_epochs: 2
micro_batch_size: 1
gradient_accumulation_steps: 1
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
# === Hyperparameter Configuration ===
optimizer: adamw_torch_8bit
learning_rate: 1e-5
lr_scheduler: constant
weight_decay: 0.01
warmup_ratio: 0.05
cosine_min_lr_ratio: 0.1
# === Data Configuration ===
datasets:
- path: WokeAI/polititune-tankie-warmup
type: chat_template
split: train
chat_template: tokenizer_default
dataset_prepared_path: last_run_prepared
# === Hardware Optimization ===
gradient_checkpointing: offload
# === Wandb Tracking ===
wandb_project: polititune-q34b-warmup
# === Checkpointing ===
saves_per_epoch: 2
# === Advanced Settings ===
output_dir: ./model-output
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
logging_steps: 1
trust_remote_code: true
fsdp:
- auto_wrap
- full_shard
fsdp_config:
fsdp_version: 2
fsdp_offload_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: GraniteMoeHybridDecoderLayer
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_reshard_after_forward: true
fsdp_activation_checkpointing: true # will disable if doesnt work
model-output
This model is a fine-tuned version of ibm-granite/granite-4.0-h-tiny on the WokeAI/polititune-tankie-warmup dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 3
- training_steps: 78
Training results
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 16
Model tree for WokeAI/Tankie-7b_1bA-sft-warmup-v0
Base model
ibm-granite/granite-4.0-h-tiny