--- license: apache-2.0 pipeline_tag: image-to-image library_name: diffusers --- # PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling This repository presents **PaCo-RL**, a comprehensive framework for consistent image generation, as described in the paper [PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling](https://huggingface.co/papers/2512.04784). Project Page: [https://x-gengroup.github.io/HomePage_PaCo-RL/](https://x-gengroup.github.io/HomePage_PaCo-RL/) Code Repository: [https://github.com/X-GenGroup/PaCo-RL](https://github.com/X-GenGroup/PaCo-RL)
       
## 🌟 Overview **PaCo-RL** is a comprehensive framework for consistent image generation through reinforcement learning, addressing challenges in preserving identities, styles, and logical coherence across multiple images for storytelling and character design applications. ### Key Components - **PaCo-Reward**: A pairwise consistency evaluator with task-aware instruction and CoT reasoning. - **PaCo-GRPO**: Efficient RL optimization with resolution-decoupled training and log-tamed multi-reward aggregation ## 🚀 Quick Start ### Installation ```bash git clone https://github.com/X-GenGroup/PaCo-RL.git cd PaCo-RL ``` ### Train Reward Model ```bash cd PaCo-Reward conda create -n paco-reward python=3.12 -y conda activate paco-reward cd LLaMA-Factory && pip install -e ".[torch,metrics]" --no-build-isolation cd .. && bash train/paco_reward.sh ``` See 📖 [PaCo-Reward Documentation](PaCo-Reward/README.md) for detailed guide. ### Run RL Training ```bash cd PaCo-GRPO conda create -n paco-grpo python=3.12 -y conda activate paco-grpo pip install -e . # Setup vLLM reward server conda create -n vllm python=3.12 -y conda activate vllm && pip install vllm export CUDA_VISIBLE_DEVICES=0 export VLLM_MODEL_PATHS='X-GenGroup/PaCo-Reward-7B' export VLLM_MODEL_NAMES='Paco-Reward-7B' bash vllm_server/launch.sh # Start training export CUDA_VISIBLE_DEVICES=1,2,3,4,5,6,7 conda activate paco-grpo bash scripts/single_node/train_flux.sh t2is ``` See 📖 [PaCo-GRPO Documentation](PaCo-GRPO/README.md) for detailed guide. ## 📁 Repository Structure ``` PaCo-RL/ ├── PaCo-GRPO/ # RL training framework │ ├── config/ # RL configurations │ ├── scripts/ # Training scripts │ └── README.md ├── PaCo-Reward/ # Reward model training │ ├── LLaMA-Factory/ # Training framework │ ├── config/ # Training configurations │ └── README.md └── README.md ``` ## 🎁 Model Zoo | Model | Type | HuggingFace | |-------|------|-------------| | **PaCo-Reward-7B** | Reward Model | [🤗 Link](https://huggingface.co/X-GenGroup/PaCo-Reward-7B) | | **PaCo-Reward-7B-Lora** | Reward Model (LoRA) | [🤗 Link](https://huggingface.co/X-GenGroup/PaCo-Reward-7B-Lora) | | **PaCo-FLUX.1-dev** | T2I Model (LoRA) | [🤗 Link](https://huggingface.co/X-GenGroup/PaCo-FLUX.1-dev-Lora) | | **PaCo-FLUX.1-Kontext-dev** | Image Editing Model (LoRA) | [🤗 Link](https://huggingface.co/X-GenGroup/PaCo-FLUX.1-Kontext-Lora) | | **PaCo-QwenImage-Edit** | Image Editing Model (LoRA) | [🤗 Link](https://huggingface.co/X-GenGroup/PaCo-Qwen-Image-Edit-Lora) | ## 🤗 Acknowledgement Our work is built upon [Flow-GRPO](https://github.com/yifan123/flow_grpo), [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory), [vLLM](https://github.com/vllm-project/vllm), and [Qwen2.5-VL](https://github.com/QwenLM/Qwen3-VL). We sincerely thank the authors for their valuable contributions to the community. ## ⭐ Citation ```bibtex @misc{ping2025pacorladvancingreinforcementlearning, title={PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling}, author={Bowen Ping and Chengyou Jia and Minnan Luo and Changliang Xia and Xin Shen and Zhuohang Dang and Hangwei Qian}, year={2025}, eprint={2512.04784}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2512.04784}, } ```
⭐ Star us on GitHub if you find PaCo-RL helpful!