XSkills's picture
Update README.md
a6f0e8b verified
|
raw
history blame
7.82 kB
---
license: cc-by-nc-4.0
language:
- tuk
- eng
library_name: transformers
datasets:
- XSkills/turkmen_english_s500
tags:
- translation
- nllb
- lora
- peft
- turkmen
model_name: nllb-200-turkmen-english-lora
pipeline_tag: translation
base_model:
- facebook/nllb-200-distilled-600M
---
# NLLB-200 (600 M) – LoRA fine-tuned for Turkmen ↔ English
**Author** : Merdan Durdyyev
**Base model** : [`facebook/nllb-200-distilled-600M`](https://huggingface.co/facebook/nllb-200-distilled-600M)
**Tuning method** : Low-Rank Adaptation (LoRA) on only the `q_proj` & `v_proj` matrices (≈ 2.4 M trainable → 0.38 % of total params).
> I built this checkpoint as the final project for my Deep-Learning class and as a small contribution to the Turkmen AI community, where open-source resources are scarce.
---
## TL;DR & Quick results
Try it on [Space demo](https://huggingface.co/spaces/XSkills/nllb-turkmen-english) Article with full technical journey is available [Medium](https://medium.com/@meinnps/fine-tuning-nllb-200-with-lora-on-a-650-sentence-turkmen-english-corpus-082f68bdec71).
### Model Comparison (Fine-tuned vs Original)
#### English to Turkmen
| Metric | Fine-tuned | Original | Difference |
|---------------------------|-----------:|---------:|-----------:|
| **BLEU** | 8.24 | 8.12 | +0.12 |
| **chrF** | 39.55 | 39.46 | +0.09 |
| **TER (lower is better)** | 87.20 | 87.30 | -0.10 |
#### Turkmen to English
| Metric | Fine-tuned | Original | Difference |
|---------------------------|-----------:|---------:|-----------:|
| **BLEU** | 25.88 | 26.48 | -0.60 |
| **chrF** | 52.71 | 52.91 | -0.20 |
| **TER (lower is better)** | 67.70 | 69.70 | -2.00 |
*Scores computed with sacre BLEU 2.5, chrF, TER on the official `test` split.
A separate spreadsheet with **human adequacy/fluency ratings** is available in the article.*
---
## Intended use & scope
* **Good for**: research prototypes, student projects, quick experiments on Turkmen text.
* **Not for**: commercial MT systems (license is **CC-BY-NC 4.0**), critical medical/legal translation, or production workloads without further validation.
---
## How to use
*(If you want to take a look to the LoRA adapter visit [nllb-200-turkmen-english-lora-adapter](https://huggingface.co/XSkills/nllb-200-turkmen-english-lora-adapter/tree/main))*
Using piplene
```python
from transformers import pipeline
# Create the translation pipeline
pipe = pipeline("translation", model="XSkills/nllb-200-turkmen-english-lora")
# Translate from English to Turkmen
# You need to specify the source and target languages using their FLORES-200 codes
text = "Hello, how are you today?"
translated = pipe(text, src_lang="eng_Latn", tgt_lang="tuk_Latn")
print(translated)
```
Using Tokenizer
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_id = "XSkills/nllb-200-turkmen-english-lora"
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
def tr(text, src="tuk_Latn", tgt="eng_Latn"):
tok.src_lang = src
ids = tok(text, return_tensors="pt", truncation=True, max_length=128)
out = model.generate(
**ids,
forced_bos_token_id=tok.convert_tokens_to_ids(tgt),
max_length=128,
num_beams=5
)
return tok.decode(out[0], skip_special_tokens=True)
print(tr("Men kitaby okaýaryn."))
```
## Training data
- Dataset : [XSkills/turkmen_english_s500](https://huggingface.co/datasets/XSkills/turkmen_english_s500) 619 parallel sentences (495 train / 62 val / 62 test) of news & official communiqués.
- Collecting even this small corpus proved challenging because publicly available Turkmen data are limited.
## Training procedure
| Item | Value |
|------|-------|
| GPU | 1 × NVIDIA A100 40 GB (Google Colab) |
| Wall-time | ~ 3 minutes |
| Optimiser | AdamW |
| Learning rate | 1 × 10⁻⁵, cosine schedule, warm-up 10% |
| Epochs | 5 |
| Batch size | 4 (train) / 8 (eval) |
| Weight-decay | 0.005 |
| FP16 | Yes |
| LoRA config | `r=16`, `alpha=32`, `dropout=0.05`, modules = `["q_proj","v_proj"]` |
### LoRA Config
```python
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type=TaskType.SEQ_2_SEQ_LM,
)
```
### Training Configuration
```python
training_args = Seq2SeqTrainingArguments(
output_dir=FINETUNED_DIR,
per_device_train_batch_size=4,
per_device_eval_batch_size=8,
weight_decay=0.005,
save_total_limit=3,
learning_rate=1e-5,
num_train_epochs=5,
lr_scheduler_type="cosine",
predict_with_generate=True,
fp16=True if torch.cuda.is_available() else False,
logging_dir="./logs",
logging_steps=50,
eval_steps=50,
save_steps=100,
eval_accumulation_steps=2,
report_to="tensorboard",
warmup_ratio=0.1,
metric_for_best_model="eval_bleu", # Use BLEU for model selection
greater_is_better=True,
)
```
## Evaluation
Automatic metrics are given in TL;DR.
A manual review on 50 random test sentences showed:
- Adequacy: 36 / 50 translations judged “Good” or better.
- Fluency: 38 / 50 sound natural to a native speaker.
*(Full spreadsheet available — ask via contact below.)*
## Limitations & bias
- Only 500ish sentences → limited vocabulary & domain coverage.
- May hallucinate proper nouns or numbers on longer inputs.
- Gender/ politeness nuances not guaranteed.
- CC-BY-NC licence forbids commercial use; respect Meta’s original terms.
## How to Contribute
We welcome contributions to improve Turkmen-English translation capabilities! Here's how you can help:
### Data Contributions
- **Read Dataset Contribution**: You can find the instructions for contributing to the dataset at [Dataset Readme](https://huggingface.co/datasets/XSkills/turkmen_english_s500/blob/main/README.md)
### Code Contributions
- **Hyperparameter experiments**: Try different LoRA configurations and document your results
- **Evaluation**: Help with human evaluation of translation quality and fluency
- **Bug fixes**: Report issues or submit fixes for the model implementation
### Use Cases & Documentation
- **Example applications**: Share how you're using the model for research or projects
- **Domain-specific guides**: Create guides for using the model in specific domains
- **Translation examples**: Share interesting or challenging translation examples
### Getting Started
1. Fork the repository
2. Make your changes
3. Submit a pull request with clear documentation of your contribution
4. For data contributions, contact the maintainer directly
All contributors will be acknowledged in the model documentation. Contact [meinnps@gmail.com](mailto:meinnps@gmail.com) with any questions or to discuss potential contributions.
---
*Note: This model is licensed under CC-BY-NC-4.0, so all contributions must be compatible with non-commercial use only.*
## Citation
```bibtex
@misc{durdyyev2025turkmenNLLBLoRA,
title = {LoRA Fine‐tuning of NLLB‐200 for Turkmen–English Translation},
author = {Durdyyev, Merdan},
year = {2025},
url = {https://huggingface.co/XSkills/nllb-200-turkmen-english-lora}
}
```
## Contact
If you have questions, suggestions or want to collaborate, please reach out through [e-mail](meinnps@gmail.com), [LinkedIn]( https://linkedin.com/in/merdandt) or [Telegram](https://t.me/merdandt).
## Future Work
- Try to tune on bigger dataset.
- Try to tweak the hyperparameters
- Use [sacreBLEU](https://github.com/mjpost/sacrebleu) metric