---
license: apache-2.0
datasets:
- ILSVRC/imagenet-1k
---
# Efficient Training of Diffusion Mixture-of-Experts Models: A Practical Recipe
  ðŸ¤— HuggingFace   |    📑 Tech Report   
## 📖 Introduction
We release the MoE Transformer that can be applied to both latent and pixel-space diffusion frameworks, employing DeepSeek-style expert modules, alternative intermediate widths, varying expert counts, and enhanced attention positional encodings. The models are already relased to Huggingface.
## Main results
### Latent diffusion framework
- Ours DSMoE v.s. [DiffMoE](https://arxiv.org/pdf/2503.14487) on 700K training steps with CFG = 1.0 (* refers to the reported results in the official paper):
| Model Name | # Act. Params | FID-50K↓ | Inception Score↑ |
|----------------------------|-------------------------|---------|----------------|
|DiffMoE-S-E16|32M|41.02|37.53|
|DSMoE-S-E16|33M|39.84|38.63|
|DSMoE-S-E48|30M|40.20|38.09|
|DiffMoE-B-E16|130M|20.83|70.26|
|DSMoE-B-E16|132M|20.33|71.42|
|DSMoE-B-E48|118M|19.46|72.69|
|DiffMoE-L-E16|458M|11.16 (14.41*)|107.74 (88.19*)|
|DSMoE-L-E16|465M|9.80|115.45|
|DSMoE-L-E48|436M|9.19|118.52|
|DSMoE-3B-E16|965M|7.52|135.29|
- Ours DSMoE v.s. DiffMoE on 700K training steps with CFG = 1.5:
| Model Name | # Act. Params | FID-50K↓ | Inception Score↑ |
|----------------------------|-------------------------|---------|----------------|
|DiffMoE-S-E16|32M|15.47|94.04|
|DSMoE-S-E16|33M|14.53|97.55|
|DSMoE-S-E48|30M|14.81|96.51|
|DiffMoE-B-E16|130M|4.87|183.43|
|DSMoE-B-E16|132M|4.50|186.79|
|DSMoE-B-E48|118M|4.27|191.03|
|DiffMoE-L-E16|458M|2.84|256.57|
|DSMoE-L-E16|465M|2.59|272.55|
|DSMoE-L-E48|436M|2.55|278.35|
|DSMoE-3B-E16|965M|2.38|304.93|
### Pixel-space diffusion framework
- Ours JiTMoE v.s. [JiT](https://arxiv.org/pdf/2511.13720) on 200 training epochs with CFG interval (* refers to the reported results in the official paper):
| Model Name | # Act. Params | FID-50K↓ | Inception Score↑ |
|----------------------------|-------------------------|---------|----------------|
|JiT-B/16|131M|4.81 (4.37*)| 222.32 (-)|
|JiTMoE-B/16-E16|133M|4.23| 245.53|
|JiT-L/16|459M| 3.19 (2.79*)| 309.72 (-)|
|JiTMoE-L/16-E16|465M|3.10| 311.34|
## 🌟 Citation
```
@article{liu2025efficient,
title={Efficient Training of Diffusion Mixture-of-Experts Models: A Practical Recipe},
author={Liu, Yahui and Yue, Yang and Zhang, Jingyuan and Sun, Chenxi and Zhou, Yang and Zeng, Wencong and Tang, Ruiming and Zhou, Guorui},
journal={arXiv preprint arXiv:2512.01252},
year={2025}
}
```