File size: 25,941 Bytes
b510dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
# -*- coding: utf-8 -*-

from __future__ import annotations

import math
import warnings
from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union, Dict

import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import (BaseModelOutputWithPast,
                                           CausalLMOutputWithPast)
from dataclasses import dataclass
from transformers.utils import ModelOutput
@dataclass
class BaseModelOutputWithPast_with_two_caches(ModelOutput):

    last_hidden_state: torch.FloatTensor = None
    past_key_values1: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    all_past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class CausalLMOutputWithPast_with_two_caches(ModelOutput):
    logits: torch.FloatTensor = None
    loss: Optional[torch.FloatTensor] = None
    past_key_values1: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    all_past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

# from fla.layers.attn import Attention
from configuration_transformer_rnn import TransformerConfig_rnn

import sys
import os
# # 添加当前目录的上上级目录到 Python 路径
# current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# sys.path.append(current_dir)
# sys.path.append("/cpfs02/user/jiangyuhua/flash-linear-attention/fla/layers")
# from attn_rnn import Attention_rnn ###########################################################
# from attn_svd import Attention_svd ###########################################################
# from attn import Attention         ###########################################################
# from gated_deltanet import GatedDeltaNet ###########################################################
# from rwkv7 import RWKV7Attention ###########################################################
# from attn_gated_delta import GatedDeltaNet_attention ###########################################################
# from scattering_mixer2 import Scattering_Mixer ###########################################################
from task_aware_delta_net import Task_Aware_Delta_Net ###########################################################

# from moe_rnn import CustomGRUCell, CustomRNNCell
from ttt_cross_layer import TTT_Cross_Layer

# from fla.models.transformer.configuration_transformer import TransformerConfig
from fla.models.utils import Cache
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
                         RMSNorm)
from fla.modules.activations import swiglu_linear
from fla.modules.layernorm import rms_norm_linear

if TYPE_CHECKING:
    from transformers.processing_utils import Unpack

logger = logging.get_logger(__name__)

class TransformerMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        hidden_ratio: Optional[int] = None,
        intermediate_size: Optional[int] = None,
        hidden_act: str = 'swish',
        norm_first: bool = True,
        norm_eps: float = 1e-5
    ) -> TransformerMLP:
        super().__init__()

        self.hidden_size = hidden_size
        # the final number of params is `hidden_ratio * hidden_size^2`
        # `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
        if hidden_ratio is None:
            hidden_ratio = 4
        if intermediate_size is None:
            intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
            intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
        self.hidden_ratio = hidden_ratio
        self.intermediate_size = intermediate_size
        self.norm_first = norm_first

        if norm_first:
            self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps)

        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[hidden_act]

    def forward(
        self,
        x: torch.Tensor,
        **kwargs: Unpack[Any]
    ) -> torch.Tensor:
        if self.norm_first:
            x = rms_norm_linear(x, self.norm.weight, self.norm.bias, self.gate_proj.weight, self.gate_proj.bias)
        else:
            x = self.gate_proj(x)
        gate, y = x.chunk(2, -1)
        return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)

class TransformerMLP_svd(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        hidden_ratio: Optional[int] = None,
        intermediate_size: Optional[int] = None,
        hidden_act: str = 'swish',
        norm_first: bool = True,
        norm_eps: float = 1e-5
    ) -> TransformerMLP_svd:
        super().__init__()

        self.hidden_size = hidden_size
        # the final number of params is `hidden_ratio * hidden_size^2`
        # `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
        if hidden_ratio is None:
            hidden_ratio = 4
        if intermediate_size is None:
            intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
            intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
        self.hidden_ratio = hidden_ratio
        self.intermediate_size = intermediate_size
        self.norm_first = norm_first

        if norm_first:
            self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps)

        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[hidden_act]

        self.reflector_qkvo = nn.Linear(self.intermediate_size, self.hidden_size * 4)

    def forward(
        self,
        x: torch.Tensor,
        reflect: bool = False,
        **kwargs: Unpack[Any]
    ) -> torch.Tensor:
        if self.norm_first:
            x = rms_norm_linear(x, self.norm.weight, self.norm.bias, self.gate_proj.weight, self.gate_proj.bias)
        else:
            x = self.gate_proj(x)
        gate, y = x.chunk(2, -1)
        hidden_states = swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
        if reflect:
            reflector_qkvo = swiglu_linear(gate, y, self.reflector_qkvo.weight, self.reflector_qkvo.bias)
            reflector_qkvo = nn.Sigmoid()(reflector_qkvo)
            return hidden_states, reflector_qkvo
        else:
            return hidden_states

class TransformerBlock_rnn(nn.Module):
    def __init__(self, config: TransformerConfig_rnn, layer_idx: int):
        super().__init__()

        self.hidden_size = config.hidden_size
        self.layer_idx = layer_idx

        if not config.norm_first:
            self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)

        self.head_dim = config.hidden_size // config.num_heads
        self.Task_Aware_Delta_Net = Task_Aware_Delta_Net(
            hidden_size=config.hidden_size,
            head_dim=self.head_dim,
            num_heads=config.num_heads,
            mode='chunk',
            rope_theta=config.rope_theta,
            max_position_embeddings=config.max_position_embeddings,
            norm_first=config.norm_first,
            norm_eps=config.norm_eps,
            layer_idx=layer_idx,
            concept_dim=config.concept_dim
        )
        # use_ttt = True
        # if use_ttt:
        #     self.rnn_router = TTT_Cross_Layer(config)
        # else:
        #     self.rnn_router = CustomGRUCell(config)

        if not config.norm_first:
            self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
        self.mlp = TransformerMLP(
            hidden_size=config.hidden_size,
            hidden_ratio=config.hidden_ratio,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            norm_first=config.norm_first,
            norm_eps=config.norm_eps
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values1: Optional[Tuple[torch.Tensor]] = None,
        all_past_key_values: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        h_old: Optional[torch.Tensor] = None,
        rnn_router: Optional[nn.Module] = None,
        params: Optional[Dict] = None,
        **kwargs: Unpack[Any]
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:

        residual = hidden_states
        if hasattr(self, 'attn_norm'):
            hidden_states = self.attn_norm(hidden_states)
    
        hidden_states, attentions, past_key_values1, all_past_key_values, h_new, params = self.Task_Aware_Delta_Net(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            past_key_values1=past_key_values1,
            all_past_key_values=all_past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            rnn_router=rnn_router,
            h_old=h_old,
            params=params,
            **kwargs
        )
            # if self.rnn_router is not None:
            #     hidden_states = self.rnn_router(hidden_states, **kwargs)

        if hasattr(self, 'mlp_norm'):
            hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
        else:
            hidden_states = residual + hidden_states
            residual = hidden_states

        hidden_states = self.mlp(hidden_states, **kwargs)
        hidden_states = residual + hidden_states    
       
        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attentions,)

        if use_cache:
            outputs += (past_key_values1, all_past_key_values)

        outputs += (h_new,)
        outputs += (params,)
        return outputs

class TransformerPreTrainedModel_rnn(PreTrainedModel):

    config_class = TransformerConfig_rnn
    supports_gradient_checkpointing = True
    _no_split_modules = ['TransformerBlock_rnn']

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(
        self,
        module: nn.Module,
        rescale_prenorm_residual: bool = False,
        num_residuals_per_layer: int = 2,
    ):
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif hasattr(module, 'reset_parameters'):
            module.reset_parameters()

        if rescale_prenorm_residual:
            # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
            #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
            #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
            #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
            #
            # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
            for name, p in module.named_parameters():
                if name in ["o_proj.weight", "down_proj.weight"]:
                    # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                    # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
                    # We need to reinit p since this code could be called multiple times
                    # Having just p *= scale would repeatedly scale it down
                    with torch.no_grad():
                        p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)


class TransformerModel_rnn(TransformerPreTrainedModel_rnn):
    def __init__(
        self,
        config: TransformerConfig_rnn
    ) -> TransformerModel_rnn:
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.concept_dim = config.concept_dim

        self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList([TransformerBlock_rnn(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
        self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)

        self.gradient_checkpointing = False

        self.post_init()

        self.rnn_router = TTT_Cross_Layer(config)

    def get_input_embeddings(self):
        return self.embeddings

    def set_input_embeddings(self, value):
        self.embeddings = value

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values1: Optional[List[torch.FloatTensor]] = None,
        all_past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs: Unpack[Any]
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        if output_attentions:
            warnings.warn(
                "`TransformerModel` does not support output attention weights now, so `output_attentions` is set to `False`."
            )
            output_attentions = False
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is None and inputs_embeds is None:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if use_cache and not isinstance(past_key_values1, Cache):
            past_key_values1 = Cache.from_legacy_cache(past_key_values1)
        if use_cache and not isinstance(all_past_key_values, Cache):
            all_past_key_values = Cache.from_legacy_cache(all_past_key_values)

        if inputs_embeds is None:
            inputs_embeds = self.embeddings(input_ids)

        # embed positions
        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        all_hidden_states = () if output_hidden_states else None
        all_attns = () if output_attentions else None
        next_cache1 = None
        next_cache2 = None
        h_old = None
        params = None
        
        for layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer.__call__,
                    hidden_states,
                    attention_mask,
                    past_key_values1,
                    all_past_key_values,
                    output_attentions,
                    use_cache,
                    h_old=h_old,
                    params=params,
                    rnn_router=self.rnn_router,
                    **kwargs
                )
            else:
                layer_outputs = layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    past_key_values1=past_key_values1,
                    all_past_key_values=all_past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    h_old=h_old,
                    params=params,
                    rnn_router=self.rnn_router,
                    **kwargs
                )

            hidden_states = layer_outputs[0]

            h_old = layer_outputs[-2]
            params = layer_outputs[-1]
            if use_cache:
                next_cache1 = layer_outputs[2 if output_attentions else 1]
                next_cache2 = layer_outputs[3 if output_attentions else 2]

            if output_attentions:
                all_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache1, all_hidden_states, all_attns] if v is not None)

        # return BaseModelOutputWithPast_with_two_caches(
        #     last_hidden_state=hidden_states,
        #     past_key_values1=next_cache1,
        #     all_past_key_values=next_cache2,
        #     hidden_states=all_hidden_states,
        #     attentions=all_attns
        # )
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache1,
            hidden_states=all_hidden_states,
            attentions=all_attns
        )
    
class TransformerForCausalLM_rnn(TransformerPreTrainedModel_rnn, GenerationMixin):

    _tied_weights_keys = ["lm_head.weight"]
    def __init__(self, config):
        super().__init__(config)
        self.model = TransformerModel_rnn(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embeddings

    def set_input_embeddings(self, value):
        self.model.embeddings = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor = None,
        past_key_values1: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        all_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: bool = True,
        num_logits_to_keep: Optional[int] = None,
        **kwargs
    ):
        # only last token for `inputs_ids` if the `past_key_values` is passed along.
        if past_key_values1 is not None:
            input_ids = input_ids[:, -1:]
        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values1 is None:
            model_inputs = {'inputs_embeds': inputs_embeds}
        else:
            # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
            # recompiles graphs as the stride of the inputs is a guard.
            # Ref: https://github.com/huggingface/transformers/pull/29114
            # TODO: use `next_tokens` directly instead.
            model_inputs = {'input_ids': input_ids.contiguous()}

        if num_logits_to_keep is not None:
            model_inputs['num_logits_to_keep'] = num_logits_to_keep
        # model_inputs.update({
        #     'past_key_values1': past_key_values1,
        #     'all_past_key_values': all_past_key_values,
        #     'use_cache': use_cache,
        #     'attention_mask': attention_mask,
        #     'num_logits_to_keep': num_logits_to_keep,
        # })
        model_inputs.update({
            'past_key_values1': past_key_values1,
            'use_cache': use_cache,
            'attention_mask': attention_mask,
            'num_logits_to_keep': num_logits_to_keep,
        })
        return model_inputs

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values1: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        all_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        num_logits_to_keep: Optional[int] = 0,
        **kwargs: Unpack[Any]
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values1=past_key_values1,
            all_past_key_values=all_past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs
        )

        hidden_states = outputs[0]
        fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
        logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:])
        loss = None
        if labels is not None:
            if self.config.fuse_cross_entropy:
                if fuse_linear_and_cross_entropy:
                    loss_fct = FusedLinearCrossEntropyLoss()
                else:
                    loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
            else:
                loss_fct = nn.CrossEntropyLoss()
            # Enable model parallelism
            # labels = labels.to(hidden_states.device)
            # labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
            if fuse_linear_and_cross_entropy:
                loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
                                labels.view(-1),
                                self.lm_head.weight,
                                self.lm_head.bias)
            else:
                loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        # return CausalLMOutputWithPast_with_two_caches(
        #     loss=loss,
        #     logits=logits,
        #     past_key_values1=outputs.past_key_values1,
        #     all_past_key_values=outputs.all_past_key_values,
        #     hidden_states=outputs.hidden_states,
        #     attentions=outputs.attentions,
        # )
        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
    
if __name__ == '__main__':
    config = TransformerConfig_rnn(
        concept_dim=128,
        attention_bias=False,
        bos_token_id=1,
        eos_token_id=2,
        fuse_cross_entropy=True,
        fuse_norm=True,
        hidden_act="swish",
        hidden_size=1024,
        initializer_range=0.02,
        max_position_embeddings=8192,
        model_type="transformer_rnn",
        num_heads=16,
        num_hidden_layers=24,
        norm_eps=1e-06,
        tie_word_embeddings=True,
        use_cache=True,
        vocab_size=32000,
    )
    model = TransformerForCausalLM_rnn(config).cuda().to(torch.bfloat16)
    input_ids = torch.randint(0, 100, (2, 70)).cuda()
    attention_mask = torch.ones_like(input_ids).cuda()
    output = model(input_ids, attention_mask=attention_mask)
    print(output)
    print(output.loss)
    print(output.logits)
    print(output.all_past_key_values)
    print(output.hidden_states)
    print(output.attentions)