File size: 34,093 Bytes
b510dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
# -*- coding: utf-8 -*-
# Copyright (c) 2024, Songlin Yang, Yu Zhang

from __future__ import annotations

import math
from typing import TYPE_CHECKING, Dict, Optional, Tuple

import torch
import torch.nn as nn
from einops import rearrange
from torch.nn import functional as F

from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
from fla.ops.gated_delta_rule import (chunk_gated_delta_rule,
                                      fused_recurrent_gated_delta_rule)

if TYPE_CHECKING:
    from transformers.processing_utils import Unpack

    from fla.models.utils import Cache


def elu_p1(x):
    return (F.elu(x, 1., False) + 1.).to(x)

def sum_norm(x):
    return (x / x.sum(-1, keepdim=True)).to(x)

from fla.modules import RMSNorm, RotaryEmbedding

if TYPE_CHECKING:
    from fla.models.utils import Cache
import warnings
try:
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import (index_first_axis, pad_input,
                                         unpad_input)
except ImportError:
    warnings.warn(
        "Flash Attention is not installed. Please install it via `pip install flash-attn --no-build-isolation`",
        category=ImportWarning
    )
    flash_attn_func = None

# https://github.com/IDSIA/recurrent-fwp/blob/master/algorithmic/layers.py#L86C1-L146C1

def lambda_init_fn(depth):
    return 0.8 - 0.6 * math.exp(-0.3 * depth)




# -*- coding: utf-8 -*-
from typing import Optional, Tuple
import torch
from einops import rearrange
from fla.ops.linear_attn.utils import normalize_output
# def scattering_mixer(
#     q: torch.Tensor,
#     k: torch.Tensor,
#     v: torch.Tensor,
#     gamma: torch.Tensor,
#     # chi: torch.Tensor,
#     scale: Optional[float] = None,
#     normalize: bool = False
# ) -> Tuple[torch.Tensor, torch.Tensor]:
#     if scale is None:
#         scale = q.shape[-1] ** -0.5
#     chunk_size = 64
#     # split_size = 2
#     q = rearrange(q, 'b (n c) h d -> b h n c d', c=chunk_size) * scale
#     # k = rearrange(k, 'b h (n c) d -> b h n c d', c=chunk_size)

#     # gamma (b , n*c, h) -> (b, h, n*c, 1)
#     gamma = rearrange(gamma, 'b l h -> b h l').unsqueeze(-1)
#     gamma_cumprod = torch.cumprod(gamma, dim=2)
#     gamma_cumprod_chunk = rearrange(gamma_cumprod, 'b h (n c) d -> b h n c d', c=chunk_size)
#     gamma_cumprod_chunk = gamma_cumprod_chunk[:, :, :, -1, :].unsqueeze(-2) # [b, h, n, 1, 1]
    
#     gamma_cumprod = rearrange(gamma_cumprod, 'b h l d -> b l h d')
#     k_cumprod = k / gamma_cumprod
#     k = rearrange(k, 'b (n c) h d -> b h n c d', c=chunk_size)
#     k_cumprod_chunk = rearrange(k_cumprod, 'b (n c) h d -> b h n c d', c=chunk_size)
#     # gamma_cumprod_chunk = rearrange(gamma_cumprod, 'b h n c d -> b h (n c) d')

#     v = rearrange(v, 'b (n c) h d -> b h n c d', c=chunk_size)

#     gamma = rearrange(gamma, 'b h (n c) d -> b h n c d', c=chunk_size) # d = 1
#     # gamma_cumprod_chunk_inter = torch.cumprod(gamma, dim=3)
#     gamma_inter = torch.cumprod(gamma, dim=3) # [b, h, n, c, 1]  
    
#     kv = k_cumprod_chunk.transpose(-1, -2) @ v # [b, h, n, d, d]
#     kv = kv.cumsum(2) # [b, h, n, d, d]   n << seq_len
#     kv = kv * gamma_cumprod_chunk # [b, h, n, d, d]
    
#     kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2) # [b, h, n, d, d]
#     inter = (q @ kv) * gamma_inter # [b, h, n, c, d]
#     intra = (
#         ((q @ (k / gamma_inter).transpose(-1, -2)) ).masked_fill_(
#         torch.triu(torch.ones(chunk_size, chunk_size, dtype=bool, device=q.device), diagonal=1),
#         0
#     )) @ v * gamma_inter  # [b, h, n, c, d]
#     o = inter + intra # [b, h, n, c, d]
#     if normalize:
#         o = normalize_output(q * scale, k, o)
#     return rearrange(o, 'b h n c d -> b (n c) h d') , None
def scattering_mixer_recurrent(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    G0: torch.Tensor,
    split_size: int,
    past_kv: Optional[torch.Tensor] = None,
    beta: Optional[torch.Tensor] = None,
    # chi: torch.Tensor,
    scale: Optional[float] = None,
    normalize: bool = False,
    order: int = 2,
    perturb: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
    if scale is None:
        scale = q.shape[-1] ** -0.5
    # chunk_size = 64
    q = rearrange(q, 'b l h (f s) -> b h l s f', s=split_size) * scale
    k = rearrange(k, 'b l h (f s) -> b h l s f', s=split_size)
    v = rearrange(v, 'b l h (d s) -> b h l s d', s=split_size)
    if order == 2:
        G0 = rearrange(G0, 'b l h d f -> b h l d f')
        # kv = k.transpose(-1, -2) @ v # [b, h, l, f, d]
        second_term = torch.einsum('b h l s d, b h l d f -> b h l s f', v, G0) # [b, h, l, s, f]
        G1 = second_term @ k.transpose(-1, -2) # [b, h, l, s, s]
        kv2 = k.transpose(-1, -2) @ G1 + k.transpose(-1, -2) # [b, h, l, f ,s]
    else:
        kv2 = k.transpose(-1, -2) # [b, h, l, f ,s]
    kv = kv2 @ v # [b, h, l, f, d]
    # kv = kv + kv2

    perturb = rearrange(perturb, 'b l h f k -> b h l f k') # [b, h, l, f, f]
    M = q.transpose(-1, -2) @ q # [b, h, l, f, f]
    M = perturb @ M # [b, h, l, f, f]
    M = q @ M # [b, h, l, s, f]
    q = q + M # [b, h, l, s, f]

    if past_kv is None:
        if beta is not None:
            beta = rearrange(beta, 'b l h -> b h l')
            beta_cumprod = torch.cumprod(beta, dim=2)
            # print('the shape of beta_cumprod', beta_cumprod.shape)
            beta_cumprod = torch.cat([torch.ones_like(beta_cumprod[:, :, :1]), beta_cumprod[:, :, :-1]], dim=2)
            # kv = kv + kv2
            beta_cumprod = rearrange(beta_cumprod, 'b h l -> b h l 1 1')
            kv = kv / beta_cumprod # [b, h, l, f, d]
            kv = kv.cumsum(2) # [b, h, l, f, d]
            kv = kv * beta_cumprod # [b, h, l, f, d]
        else:
            kv = kv.cumsum(2) # [b, h, l, f, d]
        o = q @ kv # [b, h, l, s, d]
    else:
        if beta is not None:
            beta = rearrange(beta, 'b l h -> b h l')
            kv = kv[:, :, -1, :, :] + past_kv * (beta[:, :, -2]).unsqueeze(-1).unsqueeze(-1)
        else:
            kv = kv[:, :, -1, :, :] + past_kv # [b, h, l, f, d]
        o = q @ kv # [b, h, l, s, d]
        # print('the shape of o', o.shape)
    if normalize:
        o = normalize_output(q * scale, k, o) # [b, h, l, s, d]
    return rearrange(o, 'b h l s d -> b l h (s d)') , kv

def safe_exp(x):
    return torch.exp(x - torch.max(x,dim=-1,keepdim=True)[0])

def random_proj(q, down_proj_matrix, up_proj_matrix, control_vec):
    temp = q @ down_proj_matrix
    temp = temp * control_vec
    temp = temp @ up_proj_matrix
    return torch.concat([torch.cos(temp), torch.sin(temp)], dim=-1)

def lora_proj(x, down_proj_matrix, up_proj_matrix, control_vec):
    temp = x @ down_proj_matrix
    temp = temp * control_vec
    temp = temp @ up_proj_matrix
    return temp

def gaussian_basis(x, basis_a, basis_c, basis_h):
    # x.shape = [b, q_len, channel]
    x = x.unsqueeze(-1) # [b, q_len, channel, 1]
    # basis_a.shape = [b, q_len, 1, num_basis]
    # basis_c.shape = [b, q_len, 1, num_basis]
    # basis_h.shape = [b, q_len, 1, num_basis]
    eps = 1e-6
    temp = F.sigmoid(basis_a) * torch.exp(-(x - basis_c) ** 2 / (2 * basis_h ** 2 + eps)) # [b, q_len, channel, num_basis]
    # temp = F.sigmoid(basis_a) * torch.exp(-(x - basis_c) ** 2 * (basis_h ** 2) ) # [b, q_len, channel, num_basis]
    return temp.sum(dim=-1, keepdim=False) # [b, q_len, channel]

def pad_time_cond(t, len):
    t_sin = torch.cat([torch.sin(w * t) for w in range(1, len + 1)], dim=-1)
    t_cos = torch.cat([torch.cos(w * t) for w in range(1, len + 1)], dim=-1)
    t = torch.cat([t_sin, t_cos, t], dim=-1)
    return t


class condition_interpolation(nn.Module):
    def __init__(
        self,
        hidden_size: int = 2048,
        concept_dim: int = 64,
    ):
        super().__init__()

        self.hidden_size = hidden_size
        self.concept_dim = concept_dim
        self.r = 8
        # self.len = 15
        
        self.lora = nn.Sequential(
            nn.Linear(self.hidden_size * 2 + self.concept_dim * 2, self.hidden_size // self.r, bias=False),
            nn.SiLU(),
            nn.Linear(self.hidden_size // self.r, self.hidden_size, bias=False)
        )
        nn.init.xavier_uniform_(self.lora[0].weight)
        nn.init.zeros_(self.lora[2].weight)

    def forward(self, start, end, h_new):
        # t = pad_time_cond(t, self.len)

        x = torch.cat([start, end, h_new, h_new], dim=-1)
        x = self.lora(x)

        return x



class Task_Aware_Delta_Net(nn.Module):
    """
    The layer implementaion for [Gated Delta Networks: Improving Mamba2 with Delta Rule](https://arxiv.org/abs/2412.06464).  # noqa

    Similar to Mamba2, each layer contains around 6*hidden_size*hidden_size parameters.
    Parameter alloation when use_gate=True:
        - 0.75 * hidden_size * hidden_size for the q_proj and k_proj each
        - 1.5 * hidden_size * hidden_size for the v_proj, g_proj and o_proj each
        - Others are ignorably small.
        - In total = 0.75 * 2 + 1.5 * 3 = 6 * hidden_size * hidden_size
    NOTE: num_heads * head_dim = 0.75 * hidden_size, please make sure to set the correct num_heads and head_dim.

    Parameter allocation when use_gate=False:
        - 1 * hidden_size * hidden_size for the q_proj and k_proj each
        - 2 * hidden_size * hidden_size for the v_proj and o_proj each
        - Others are ignorably small.
        - In total = 1 * 2 + 2 * 2 = 6 * hidden_size * hidden_size
    Args:
        hidden_size (int, Optional):
            The hidden size of the input. Default: 2048.
        expand_v (float, Optional):
            The expansion ratio for the value dim. Default: 2.0.
        head_dim (int, Optional):
            The dimension of each head. Default: 256.
        num_heads (int, Optional):
            The number of heads. Default: 4.
        mode (str, Optional):
            Which Gated DeltaNet kernel to use.
            Currently available: `chunk` and `fused_recurrent`.
            Default: `chunk`.
        use_beta (bool, Optional):
            Whether to use beta. Default: `True`.
        use_gate (bool, Optional):
            Whether to use output gate. Default: `True`.
        use_short_conv (bool, Optional):
            Whether to use short convolutions. Default: `True`.
        conv_size (int, Optional):
            The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
        conv_bias (bool, Optional):
            Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
        layer_idx (int, Optional):
            The index of the layer. Default: None.
        norm_eps (float, Optional):
            The epsilon value for the normalization layer. Default: 1e-5.
    """

    def __init__(
        self,
        hidden_size: int = 2048,
        expand_v: float = 1,
        head_dim: int = 256,
        num_heads: int = 6,
        num_heads_delta: int = 6,
        mode: str = 'chunk',
        use_gate: bool = True,
        use_short_conv: bool = True,
        conv_size: int = 4,
        conv_bias: bool = False,
        layer_idx: int = None,
        norm_eps: float = 1e-5,
        rope_theta: float = 10000.,
        max_position_embeddings: int = None,
        window_size: int = None,
        concept_dim: int = 128,
        **kwargs: Unpack[Dict]
    ) -> Task_Aware_Delta_Net:
        super().__init__()
        self.split_size = 64 # 64

        self.mode = mode
        self.hidden_size = hidden_size
        self.expand_v = expand_v

        self.use_gate = use_gate
        self.use_short_conv = use_short_conv
        # self.use_short_conv = False
        self.conv_size = conv_size
        self.conv_bias = conv_bias
        self.head_dim = head_dim
        self.strict_head = False
        if self.strict_head:
            head_dim_delta = int (0.75 * hidden_size / num_heads_delta)
            head_dim = head_dim_delta
            self.head_dim_delta = head_dim_delta
            self.head_dim = head_dim_delta
        self.num_heads = num_heads
        self.key_dim = self.num_heads * self.head_dim
        self.value_dim = self.key_dim * self.expand_v
        self.head_qk_dim = head_dim
        self.head_v_dim = head_dim * self.expand_v
        self.layer_idx = layer_idx
        self.silu = nn.SiLU()
        assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
        self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
        self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
        self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
        self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)

        self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
        self.a_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
        A = torch.empty(self.num_heads, dtype=torch.float32).uniform_(0, 16)
        A_log = torch.log(A)
        self.A_log = nn.Parameter(A_log)
        self.A_log._no_weight_decay = True
        # self.D = nn.Parameter(torch.ones(self.num_heads))
        # self.D._no_weight_decay = True
        # hard coded for now
        dt_min = 0.001
        dt_max = 0.1
        dt_init_floor = 1e-4
        dt = torch.exp(
            torch.rand(self.num_heads) * (math.log(dt_max) - math.log(dt_min))
            + math.log(dt_min)
        )
        dt = torch.clamp(dt, min=dt_init_floor)
        # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
        inv_dt = dt + torch.log(-torch.expm1(-dt))
        self.dt_bias = nn.Parameter(inv_dt)
        # Just to be explicit. Without this we already don't put wd on dt_bias because of the check
        # name.endswith("bias") in param_grouping.py
        self.dt_bias._no_weight_decay = True
        if use_short_conv:
            self.conv_size = conv_size
            self.q_conv1d = ShortConvolution(
                hidden_size=self.key_dim,
                kernel_size=conv_size,
                activation='silu'
            )
            self.k_conv1d = ShortConvolution(
                hidden_size=self.key_dim,
                kernel_size=conv_size,
                activation='silu'
            )
            self.v_conv1d = ShortConvolution(
                hidden_size=self.value_dim,
                kernel_size=conv_size,
                activation='silu'
            )
        else:
            raise UserWarning(
                "ShortConvolution is crucial to the performance. "
                "Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
            )
        if use_gate:
            self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
            self.o_norm = FusedRMSNormSwishGate(self.head_v_dim, eps=norm_eps)
        else:
            self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)

        self.num_prelude = 2
        self.ttt = True 
        if self.ttt and self.layer_idx >= self.num_prelude: # use TTT as cross-layer concept learner
            self.concept_dim = concept_dim  # hidden_size // 8
            self.concept_proj = nn.Linear(hidden_size, self.concept_dim * 3, bias=False)
            self.lr1_proj = nn.Linear(hidden_size, 1, bias=False)
            self.lr2_proj = nn.Linear(hidden_size, 1, bias=False)
            # self.router  = nn.Linear(hidden_size, self.num_heads * 2, bias=False) # , bias=False
            self.router2 = nn.Linear(self.concept_dim, self.num_heads * 2, bias=False)
            self.router3 = nn.Linear(self.concept_dim, 2, bias=False)

            self.condition_interpolation = condition_interpolation(hidden_size, concept_dim)
            self.t_proj = nn.Linear(concept_dim, 1, bias=False)

            # self.num_basis = 2
            # self.basis_proj = nn.Linear(self.concept_dim, self.num_basis * 3, bias=False)
            self.special_mask = nn.Parameter(torch.zeros(self.hidden_size))
            # self.special_mask_gated_delta = nn.Parameter(torch.zeros(self.hidden_size))
            self.use_bias = True
            if self.use_bias:    
                self.learnable_bias0 = nn.Parameter(torch.zeros(1))

        self.apply(self._initialize_weights)
        # Initialize LoRA matrices for q, k, v, and o projections using nn.Sequential
        self.r = 4
        self.q_lora = nn.Sequential(
            nn.Linear(self.hidden_size, self.key_dim // self.r, bias=False),
            nn.SiLU(),
            nn.Linear(self.key_dim // self.r, self.key_dim, bias=False)
        )
        nn.init.xavier_uniform_(self.q_lora[0].weight)
        nn.init.zeros_(self.q_lora[2].weight)
        self.k_lora = nn.Sequential(
            nn.Linear(self.hidden_size, self.key_dim // self.r, bias=False),
            nn.SiLU(),
            nn.Linear(self.key_dim // self.r, self.key_dim, bias=False)
        )
        nn.init.xavier_uniform_(self.k_lora[0].weight)
        nn.init.zeros_(self.k_lora[2].weight)

        self.v_lora = nn.Sequential(
            nn.Linear(self.hidden_size, self.value_dim // self.r, bias=False),
            nn.SiLU(),
            nn.Linear(self.value_dim // self.r, self.value_dim, bias=False)
        )
        nn.init.xavier_uniform_(self.v_lora[0].weight)
        nn.init.zeros_(self.v_lora[2].weight)

        self.o_proj_attn = nn.Linear(self.value_dim, self.hidden_size, bias=False)
        nn.init.xavier_uniform_(self.o_proj_attn.weight, gain=2 ** -2.5)
        # self.o_proj_attention = nn.Linear(self.value_dim, self.hidden_size, bias=False)
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings
        self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
        self.window_size = window_size


    def _initialize_weights(self, module: nn.Module):
        if getattr(module, "_is_hf_initialized", False):
            return
        if isinstance(module, nn.Linear):
            nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        module._is_hf_initialized = True

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values1: Optional[Cache] = None,
        all_past_key_values: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        rnn_router: Optional[nn.Module] = None,
        h_old: Optional[torch.Tensor] = None,
        params: Optional[Dict] = None,
        **kwargs: Unpack[Dict]
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache], Optional[torch.Tensor], Optional[torch.Tensor]]:
        # output: return o, None, past_key_values1, past_key_values2, h_new, params
        if attention_mask is not None:
            assert len(attention_mask.shape) == 2, (
                "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
                "for padding purposes (0 indicating padding). "
                "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
            )

        mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
        # # mode = self.mode
        # mode = 'chunk'
        if self.training:
            assert mode == 'chunk', "Only chunk mode is supported in training."
        last_state2 = None
        if all_past_key_values is not None:
            if all_past_key_values._seen_tokens > 0:
                past_key_values1, past_key_values2 = all_past_key_values
            else:   
                from fla.models.utils import Cache
                past_key_values1, past_key_values2 = Cache(), Cache()   

            if len(past_key_values2) > self.layer_idx:
                last_state2 = past_key_values2[self.layer_idx]
        batch_size, q_len, _ = hidden_states.size()
        cu_seqlens = kwargs.get('cu_seqlens', None)
        max_seqlen = kwargs.get('max_seqlen', q_len)
        if self.ttt:
            flag = True
            if self.layer_idx < self.num_prelude:  # 前2层 (0-1)
                if flag == True:
                    params = rnn_router.init_params_as_logits(batch_size, q_len)
                    flag = False
                mask = torch.ones(batch_size, q_len, self.num_heads, 2, device=hidden_states.device).to(hidden_states.dtype)
                h_new = None
                special_mask_attn = torch.zeros(batch_size, q_len, 1, device=hidden_states.device).to(hidden_states.dtype)
            else:
                concept_qkv = self.concept_proj(hidden_states)
                concept_q, concept_k, concept_v = concept_qkv.chunk(3, dim=-1)
                lr_linear = F.sigmoid(self.lr1_proj(hidden_states)) * 1e-2
                lr_ln = F.sigmoid(self.lr2_proj(hidden_states)) * 1e-2
                # lr_linear = 1e-2
                # lr_ln = 1e-2
                if rnn_router is not None:
                    params = rnn_router.learn(concept_k, concept_v, params, lr_linear, lr_ln)
                
                h_new = rnn_router.predict(concept_q, params)
                t = F.sigmoid(self.t_proj(h_new))
                t_b = 1 - t

                input_router = self.router2(h_new)
                # input_router = nn.Softmax(dim=-1)(input_router) # [batch_size, seq_len, head_dim, 2]
                input_router = F.sigmoid(input_router) # [batch_size, seq_len, head_dim * 2]
                special_mask = self.router3(h_new)
                # 添加偏置使第一个位置更容易被选中(通过增加第一个位置的logits值)
                bias = torch.zeros_like(special_mask)
                bias[..., 0] = 2.0 
                if self.use_bias:
                    bias[..., 0] = 2.0 + self.learnable_bias0  # 给第0个位置添加正偏置,使第一个位置更容易被选为0
                special_mask = F.gumbel_softmax(special_mask + bias, tau=0.1, hard=True)
                special_mask_attn = special_mask[:, :, 1].unsqueeze(-1) # [batch_size, seq_len, 1]

                mask = input_router
                mask = mask.reshape(batch_size, q_len, self.num_heads, 2)
        # if self.layer_idx >= self.num_prelude:
        #     hidden_states = hidden_states + special_mask_gated_delta * self.special_mask_gated_delta.reshape(1, 1, -1)
        if self.use_short_conv:
            conv_state_q, conv_state_k, conv_state_v = None, None, None
            if last_state2 is not None:
                conv_state_q, conv_state_k, conv_state_v = last_state2['conv_state']
            conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
            # position_ids = kwargs.get('position_ids', None)
            q_shared = self.q_proj(hidden_states)
            k_shared = self.k_proj(hidden_states)
            v_shared = self.v_proj(hidden_states)
            q, conv_state_q = self.q_conv1d(x=q_shared,
                                            mask=conv_mask,
                                            cache=conv_state_q,
                                            output_final_state=use_cache,
                                            cu_seqlens = cu_seqlens
                                            )
            k, conv_state_k = self.k_conv1d(x=k_shared,
                                            mask=conv_mask,
                                            cache=conv_state_k,
                                            output_final_state=use_cache,
                                            cu_seqlens = cu_seqlens
                                            )
            v, conv_state_v = self.v_conv1d(x=v_shared,
                                            mask=conv_mask,
                                            cache=conv_state_v,
                                            output_final_state=use_cache,
                                            cu_seqlens = cu_seqlens
                                            )
        else:
            q = self.silu(self.q_proj(hidden_states))
            k = self.silu(self.k_proj(hidden_states))
            v = self.silu(self.v_proj(hidden_states))

        if self.layer_idx >= self.num_prelude:
            hidden_states_attn = hidden_states + special_mask_attn * self.special_mask.reshape(1, 1, -1)
        else:
            hidden_states_attn = hidden_states
        q_attn = self.q_lora(hidden_states_attn) + q_shared
        k_attn = self.k_lora(hidden_states_attn) + k_shared
        v_attn = self.v_lora(hidden_states_attn) + v_shared

        # q_attn = input_router[:, :, 1].unsqueeze(-1) * q_attn           
        q_attn, k_attn, v_attn = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', h=self.num_heads), (q_attn, k_attn, v_attn))
        # equivalent to cu_seqlens in `flash_attn`

        seqlen_offset = 0
        # seqlen_offset, max_seqlen = 0, q_len
        if all_past_key_values is not None:
            seqlen_offset = past_key_values1.get_seq_length(self.layer_idx)
            max_seqlen = q_attn.shape[1] + seqlen_offset

            if attention_mask is not None:
                # to deliminate the offsets of padding tokens
                seqlen_offset = (seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]).clamp(min=0)
                max_seqlen = q_attn.shape[1] + max(seqlen_offset)

        if self.max_position_embeddings is not None:
            max_seqlen_rotary = max(max_seqlen, self.max_position_embeddings)
        else:
            max_seqlen_rotary = max_seqlen
        q_attn, k_attn = self.rotary(q_attn, k_attn, seqlen_offset=seqlen_offset, max_seqlen=max_seqlen_rotary, cu_seqlens=cu_seqlens)
        if all_past_key_values is not None:
            k_attn, v_attn = past_key_values1.update(
                attn_state=(k_attn.flatten(-2, -1), v_attn.flatten(-2, -1)),
                layer_idx=self.layer_idx,
                offset=q_len,
                cache_kwargs=dict(window_size=self.window_size)
            )['attn_state']
            k_attn = rearrange(k_attn, '... (h d) -> ... h d', h=self.num_heads)
            v_attn = rearrange(v_attn, '... (h d) -> ... h d', h=self.num_heads)
        if flash_attn_func is None:
            raise ImportError("Please install Flash Attention via `pip install flash-attn --no-build-isolation` first")

        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            q_attn, k_attn, v_attn, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(q_attn, k_attn, v_attn, attention_mask, q_len)
            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_q, max_seqlen_k = max_seq_lens
            o_attn = flash_attn_varlen_func(
                q_attn, k_attn, v_attn,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_q,
                max_seqlen_k=max_seqlen_k,
                causal=True,
                window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
            )
            o_attn = pad_input(o_attn, indices_q, batch_size, q_len)
        elif cu_seqlens is not None:
            o_attn = flash_attn_varlen_func(
                q_attn.squeeze(0), k_attn.squeeze(0), v_attn.squeeze(0),
                cu_seqlens_q=cu_seqlens,
                cu_seqlens_k=cu_seqlens,
                max_seqlen_q=max_seqlen,
                max_seqlen_k=max_seqlen,
                causal=True,
                window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
            ).unsqueeze(0)
        else:
            o_attn = flash_attn_func(
                q_attn, k_attn, v_attn,
                causal=True,
                window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
            ) # [total, num_heads, head_dim]   (total = batch_size * seq_len)
        if batch_size > 1:
            o_attn = o_attn.reshape(batch_size, q_len, self.num_heads, self.head_dim)

        if self.layer_idx >= self.num_prelude:
            o_attn = torch.einsum("bnh,bnhd->bnhd", mask[:, :, :, 0], o_attn) # [batch_size, seq_len, num_heads, head_dim]
        
        o_attn = o_attn.reshape(batch_size, q_len, self.value_dim)
        # o_attn = self.o_proj_attention(o_attn)
        o_attn = self.o_proj_attn(o_attn) # + self.o_proj(o_attn)
        #################################################### end of attention ####################################################
        k, v = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', h=self.num_heads), (k, v))

        beta = self.b_proj(hidden_states).sigmoid()
        g = -self.A_log.float().exp() * F.softplus(self.a_proj(hidden_states).float() + self.dt_bias)
        # dealing with padding
        if attention_mask is not None:
            beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
            g = g.mul(attention_mask[:, -g.shape[-2]:, None])
        recurrent_state = last_state2['recurrent_state'] if last_state2 is not None else None
        # if self.layer_idx >= self.num_prelude:
        #     # q_plus_feature = q.clone()
        #     q_safe_exp = safe_exp(q)
        #     q_plus_feature = q + q_safe_exp * if_feature_map
        #     # q_random_feature = random_proj(q, self.down_proj_matrix, self.up_proj_matrix, control_vec)
        #     # q_plus_feature = q_plus_feature + q_random_feature * if_feature_map2
        #     q_lora = lora_proj(q, self.down_proj_matrix, self.up_proj_matrix, torch.ones_like(control_vec)) # F.sigmoid(control_vec))  # F.sigmoid(control_vec)
        #     q_gaussian_feature = gaussian_basis(q_lora, basis_a, basis_c, basis_h)
        #     q_plus_feature = q_plus_feature + q_gaussian_feature * if_feature_map3

        #     q = q_plus_feature
        q = rearrange(q, 'b t (h d) -> b t h d', h=self.num_heads)

        if mode == 'chunk':
            o, recurrent_state = chunk_gated_delta_rule(
                q=q,
                k=k,
                v=v,
                g=g,
                beta=beta,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens,
                head_first=False,
                use_qk_l2norm_in_kernel=True
            )
        elif mode == 'fused_recurrent':
            o, recurrent_state = fused_recurrent_gated_delta_rule(
                q=q,
                k=k,
                v=v,
                g=g,
                beta=beta,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens,
                # head_first=False,
                use_qk_l2norm_in_kernel=True
            )
        if all_past_key_values is not None:
            past_key_values2.update(
                recurrent_state=recurrent_state,
                conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
                layer_idx=self.layer_idx,
                offset=q.shape[1]
            )
        if self.use_gate:
            g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', h=self.num_heads)
            o = self.o_norm(o, g)
        else:
            o = self.o_norm(o)
        if self.layer_idx >= self.num_prelude:
            o = torch.einsum("bnh,bnhd->bnhd", mask[:, :, :, 1], o) # [batch_size, seq_len, num_heads, head_dim]
        o_gated_delta = rearrange(o, 'b t h d -> b t (h d)')
        o_gated_delta = self.o_proj(o_gated_delta)
        #################################################### end of delta rule ####################################################

        if self.layer_idx < self.num_prelude:
            o = o_gated_delta + o_attn
        else:
            o = t_b * o_gated_delta + t * o_attn
            noise_std = t_b * t
            noise = self.condition_interpolation(o_gated_delta, o_attn, h_new) * noise_std
            o = o + noise

        if all_past_key_values is not None:
            all_past_key_values = (past_key_values1, past_key_values2)
        return o, None, None, all_past_key_values, h_new, params

    def _upad_input(self, q, k, v, attention_mask, q_len):
        seqlens = attention_mask.sum(-1, dtype=torch.int32)
        indices_k = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
        max_seqlen_k = seqlens.max().item()
        cu_seqlens_k = F.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
        batch_size, seq_len, num_key_value_heads, head_dim = k.shape

        k = index_first_axis(k.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
        v = index_first_axis(v.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
        if q_len == seq_len:
            q = index_first_axis(q.reshape(batch_size * seq_len, self.num_heads, head_dim), indices_k)
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_q = max_seqlen_k
            indices_q = indices_k
        elif q_len == 1:
            max_seqlen_q = 1
            # There is a memcpy here, that is very bad.
            cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=q.device)
            indices_q = cu_seqlens_q[:-1]
            q = q.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -q_len:]
            q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask)

        return q, k, v, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)

if __name__ == "__main__":
    gated_delta_net_attention = Task_Aware_Delta_Net()
    q = torch.randn(1, 10, 6, 256)
    k = torch.randn(1, 10, 6, 256)
    v = torch.randn(1, 10, 6, 256)
    print(q.shape, k.shape, v.shape)
    # 调用forward函数
    o, _, _, _ = gated_delta_net_attention.forward(hidden_states=torch.randn(2, 70, 128))
    print(o.shape)