File size: 14,652 Bytes
b510dde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import torch
import torch.nn as nn
import torch.nn.functional as F
def scan(f, init, xs, out, checkpoint_group=0):
"""
模拟JAX中的lax.scan函数,用于序列化处理数据。
参数:
f: 处理函数,接收(carry, x)作为输入,返回(new_carry, y)
init: 初始状态值
xs: 输入序列,可以是字典或列表
out: 输出结果的存储张量
checkpoint_group: 梯度检查点分组数量,用于节省内存
返回:
carry: 最终的状态值
out: 填充好的输出张量
"""
# 初始化状态值
carry = init
# 确定输入序列的长度
if isinstance(xs, dict):
# 如果输入是字典,取第一个键对应值的长度
num_items = len(next(iter(xs.values())))
else:
# 如果输入是列表,取第一个元素的长度
num_items = len(xs[0])
def scan_fn(carry, i_start, i_end):
"""内部扫描函数,处理从i_start到i_end的元素"""
for i in range(i_start, i_end):
# 提取当前位置的输入
if isinstance(xs, dict):
# 字典情况:创建包含每个键在位置i处值的新字典
x = {key: tensor[i] for key, tensor in xs.items()}
else:
# 列表情况:创建包含每个列表在位置i处值的新列表
x = [x[i] for x in xs]
# 调用处理函数f,获取新的状态和输出
carry, y = f(carry, x)
# 将输出存储到结果张量中
out[i] = y
# 返回最终状态
return carry
# 根据checkpoint_group决定是否使用梯度检查点
if checkpoint_group > 0:
# 计算每个检查点组包含的元素数量
ckpt_every_n = num_items // checkpoint_group
# 按组处理数据
for k in range(0, num_items, ckpt_every_n):
# 使用torch.utils.checkpoint节省内存
carry = torch.utils.checkpoint.checkpoint(
scan_fn, carry, k, min(k + ckpt_every_n, num_items), use_reentrant=False
)
else:
# 不使用检查点,直接处理所有数据
carry = scan_fn(carry, 0, num_items)
# 返回最终状态和填充好的输出张量
return carry, out
def ln_fwd(x, gamma, beta, eps=1e-6):
"Batch forward for LayerNorm."
# Mean and variance computation
mu = x.mean(dim=-1, keepdim=True)
var = x.var(dim=-1, keepdim=True, unbiased=False)
# Normalization
std = torch.sqrt(var + eps)
x_hat = (x - mu) / std
# Scale and shift
y = gamma * x_hat + beta
return y
def ln_fused_l2_bwd(x, l2_target, gamma, beta, eps=1e-6):
"""
层归一化(LayerNorm)与L2损失融合的反向传播函数。
这个函数执行两个操作:
1. 前向传播:对输入x进行层归一化,得到输出y
2. 反向传播:计算L2损失(y - l2_target)对输入x的梯度
参数:
x: 输入张量
l2_target: L2损失的目标值
gamma: 层归一化的缩放参数
beta: 层归一化的偏移参数
eps: 数值稳定性的小常数
返回:
z: 损失对输入x的梯度
"""
D = x.shape[-1] # 获取特征维度
# 计算均值和方差
mu = x.mean(dim=-1, keepdim=True) # 沿特征维度计算均值
var = x.var(dim=-1, keepdim=True, unbiased=False) # 计算方差
# 归一化处理
std = torch.sqrt(var + eps) # 计算标准差
x_hat = (x - mu) / std # 标准化输入
# 缩放和偏移
y = gamma * x_hat + beta # 层归一化的输出
# 计算梯度
grad_output = y - l2_target # L2损失的梯度
grad_x_hat = grad_output * gamma # 对标准化输入的梯度
# 完整的反向传播公式,考虑了归一化操作的链式法则
z = (
(1.0 / D)
* (
D * grad_x_hat
- grad_x_hat.sum(dim=-1, keepdim=True) # 均值项的梯度贡献
- x_hat * (grad_x_hat * x_hat).sum(dim=-1, keepdim=True) # 方差项的梯度贡献
)
/ std # 除以标准差完成梯度计算
)
return z
from torch.autograd import Function
class MyLinearFunction(Function):
@staticmethod
def forward(ctx, input, weight, bias):
"""
正向计算: y = x * W^T + b
参数:
ctx :上下文对象,用于保存反向传播时需要的信息。
input :输入 tensor, 尺寸为 (N, in_features)
weight :权重 tensor, 尺寸为 (out_features, in_features)
bias :偏置 tensor, 尺寸为 (out_features)
返回:
输出 tensor, 尺寸为 (N, out_features)
"""
# 保存必要的中间变量,供 backward 时使用
ctx.save_for_backward(input, weight, bias)
# 计算输出
output = input.matmul(weight.t()) + bias
return output
@staticmethod
def backward(ctx, grad_output):
"""
反向传播:计算正向计算中各个输入的梯度。
参数:
grad_output:从上层传回来的梯度,形状与 forward 的输出相同 (N, out_features)
返回:
grad_input :关于 input 的梯度,形状 (N, in_features)
grad_weight :关于 weight 的梯度,形状 (out_features, in_features)
grad_bias :关于 bias 的梯度,形状 (out_features)
"""
# 从上下文中取出保存的变量
input, weight, bias = ctx.saved_tensors
# 链式法则:已知 output = input.matmul(weight.t()) + bias
# 关于 input 的梯度:
# ∂L/∂input = ∂L/∂output * ∂output/∂input = grad_output.matmul(weight)
grad_input = grad_output.matmul(weight)
# 关于 weight 的梯度:
# ∂L/∂weight = ∂L/∂output^T * ∂output/∂weight
# 注意到 output 对 weight 的导数为 input 的转置,此处:
# grad_weight 的计算通常为:grad_output^T.matmul(input)
grad_weight = grad_output.t().matmul(input)
# 关于 bias 的梯度:
# 因为 output = ... + bias,因此每个 bias 项对应所有样本的梯度和
grad_bias = grad_output.sum(dim=0)
# 注意:返回的梯度顺序必须与 forward 中参数的顺序一致
return grad_input, grad_weight, grad_bias
class TTT_Cross_Layer(nn.Module):
def __init__(self, config):
super().__init__()
self.input_size = config.concept_dim # 128
self.concept_dim = config.concept_dim # 128
# self.linear = nn.Linear(self.input_size, self.hidden_size)
# self.ln = nn.LayerNorm(self.hidden_size)
# self.logit_dim = 32
self.logit_dim = config.logit_dim
self.weight_linear = nn.Parameter(torch.empty(self.concept_dim, self.input_size, self.logit_dim))
self.weight_ln = nn.Parameter(torch.empty(self.concept_dim, self.logit_dim))
self.bias_linear = nn.Parameter(torch.empty(self.concept_dim, self.logit_dim))
self.bias_ln = nn.Parameter(torch.empty(self.concept_dim, self.logit_dim))
# self.weight_linear_tmp = torch.empty_like(self.weight_linear)
# self.weight_ln_tmp = torch.empty_like(self.weight_ln)
# self.bias_linear_tmp = torch.empty_like(self.bias_linear)
# self.bias_ln_tmp = torch.empty_like(self.bias_ln)
self.config = config
self.init_weights()
# def init_tmp_weights(self):
# weight_linear_tmp = self.weight_linear.clone().to(self.weight_linear.device).to(self.weight_linear.dtype)
# weight_ln_tmp = self.weight_ln.clone().to(self.weight_ln.device).to(self.weight_ln.dtype)
# bias_linear_tmp = self.bias_linear.clone().to(self.bias_linear.device).to(self.bias_linear.dtype)
# bias_ln_tmp = self.bias_ln.clone().to(self.bias_ln.device).to(self.bias_ln.dtype)
# params = {
# 'weight_linear_tmp': weight_linear_tmp,
# 'weight_ln_tmp': weight_ln_tmp,
# 'bias_linear_tmp': bias_linear_tmp,
# 'bias_ln_tmp': bias_ln_tmp
# }
# return params
def init_params_as_logits(self, batch_size, sequence_length):
weight_linear_tmp = torch.ones(batch_size, sequence_length, self.logit_dim).to(self.weight_linear.device).to(self.weight_linear.dtype)
weight_ln_tmp = torch.ones(batch_size, sequence_length, self.logit_dim).to(self.weight_linear.device).to(self.weight_linear.dtype)
bias_linear_tmp = torch.ones(batch_size, sequence_length, self.logit_dim).to(self.weight_linear.device).to(self.weight_linear.dtype)
bias_ln_tmp = torch.ones(batch_size, sequence_length, self.logit_dim).to(self.weight_linear.device).to(self.weight_linear.dtype)
params = {
'weight_linear_tmp': weight_linear_tmp,
'weight_ln_tmp': weight_ln_tmp,
'bias_linear_tmp': bias_linear_tmp,
'bias_ln_tmp': bias_ln_tmp
}
return params
def init_weights(self):
# torch.manual_seed(42) # 固定随机种子可能导致可预测性
nn.init.normal_(self.weight_linear, mean=0.0, std=self.config.initializer_range)
nn.init._no_grad_fill_(self.weight_ln, 1.0 / self.logit_dim)
# nn.init.zeros_(self.bias_linear)
# nn.init.zeros_(self.bias_ln)
nn.init.normal_(self.bias_linear, mean=0.0, std=self.config.initializer_range / self.logit_dim)
nn.init.normal_(self.bias_linear, mean=0.0, std=self.config.initializer_range / self.logit_dim)
def get_weight_per_token(self, params):
weight_linear_tmp = torch.einsum('iol,bsl->bsio', self.weight_linear, params['weight_linear_tmp'])
weight_ln_tmp = torch.einsum('ol,bsl->bso', self.weight_ln, params['weight_ln_tmp'])
bias_linear_tmp = torch.einsum('ol,bsl->bso', self.bias_linear, params['bias_linear_tmp'])
bias_ln_tmp = torch.einsum('ol,bsl->bso', self.bias_ln, params['bias_ln_tmp'])
return weight_linear_tmp, weight_ln_tmp, bias_linear_tmp, bias_ln_tmp
def learn(self, k, v, params, lr_linear=1, lr_ln=1):
# k和v形状: [batch_size, length, channel_dim]
# batch_size, seq_length, channel_dim = k.shape
# weight_linear_tmp = params['weight_linear_tmp']
# weight_ln_tmp = params['weight_ln_tmp']
# bias_linear_tmp = params['bias_linear_tmp']
# bias_ln_tmp = params['bias_ln_tmp']
weight_linear_tmp, weight_ln_tmp, bias_linear_tmp, bias_ln_tmp = self.get_weight_per_token(params)
# 1. 将输入重塑为二维以进行预测
# k_reshaped = k.reshape(-1, channel_dim) # [batch_size*length, channel_dim]
# output_reshaped = self.predict(k_reshaped, params) # [batch_size*length, channel_dim]
# z = F.linear(k_reshaped, params['weight_linear_tmp'], params['bias_linear_tmp'])
# mu = z.mean(dim=-1, keepdim=True)
# var = z.var(dim=-1, keepdim=True, unbiased=False)
z = torch.einsum('bsi,bsio->bso', k, weight_linear_tmp) + bias_linear_tmp
mu = z.mean(dim=-1, keepdim=True)
var = z.var(dim=-1, keepdim=True, unbiased=False)
# Normalization
eps = 1e-6
std = torch.sqrt(var + eps)
z_hat = (z - mu) / std
# output_reshaped = params['weight_ln_tmp'] * z_hat + params['bias_ln_tmp'] + k
output_reshaped = weight_ln_tmp * z_hat + bias_ln_tmp + k
# # 计算误差
# v_reshaped = v.reshape(-1, channel_dim)
# error_reshaped = output_reshaped - v_reshaped # [batch_size*length, channel_dim]
error_reshaped = output_reshaped - v
# 计算层归一化梯度
# 层归一化参数更新
# ln_rate = learning_rate * 0.1 # 降低LN学习率
grad_weight_ln_temp = error_reshaped * z_hat
# grad_weight_ln = grad_weight_ln_temp.mean(dim=0) #
# weight_ln_tmp = weight_ln_tmp - ln_rate * grad_weight_ln # sequence length, channel_dim
grad_weight_ln = grad_weight_ln_temp
# batch_size, sequence length, logit_dim
params0 = params['weight_ln_tmp'] - lr_ln * torch.einsum('ol,bso->bsl', self.weight_ln, grad_weight_ln)
# bias_update = ln_rate * error_reshaped # .mean(dim=0)
# bias_ln_tmp = bias_ln_tmp - bias_update # batch_size, sequence length, concept_dim
grad_bias_ln = error_reshaped
params1 = params['bias_ln_tmp'] - lr_ln * torch.einsum('ol,bso->bsl', self.bias_ln, grad_bias_ln)
# 线性层权重梯度: [out_dim, in_dim]
# grad_linear_temp = error_reshaped - error_reshaped.mean(dim=-1, keepdim=True) - z_hat * grad_weight_ln_temp.mean(dim=-1, keepdim=True)
grad_linear = weight_ln_tmp * error_reshaped / std # batch_size, sequence length, concept_dim
# grad_weight_linear = grad_linear.t() @ k # [channel_dim, channel_dim]
grad_weight_linear = torch.einsum('bsi,bso->bsio', k, grad_linear)
# 应用梯度 (避免使用原地操作 -=)
# weight_linear_tmp = weight_linear_tmp - learning_rate * grad_weight_linear.mean(dim=0)
params2 = params['weight_linear_tmp'] - lr_linear * torch.einsum('iol,bsio->bsl', self.weight_linear, grad_weight_linear)
# 更新偏置(如果存在) (避免使用原地操作 -=)
grad_b = grad_linear #.mean(dim=0) # [channel_dim]
# bias_linear_tmp = bias_linear_tmp - learning_rate * grad_b
params3 = params['bias_linear_tmp'] - lr_linear * torch.einsum('ol,bso->bsl', self.bias_linear, grad_b)
params_new = {
'weight_linear_tmp': params2,
'weight_ln_tmp': params0,
'bias_linear_tmp': params3,
'bias_ln_tmp': params1
}
return params_new
def predict(self, q, params):
weight_linear_tmp, weight_ln_tmp, bias_linear_tmp, bias_ln_tmp = self.get_weight_per_token(params)
z = torch.einsum('bsi,bsio->bso', q, weight_linear_tmp) + bias_linear_tmp
mu = z.mean(dim=-1, keepdim=True)
var = z.var(dim=-1, keepdim=True, unbiased=False)
# Normalization
eps = 1e-6
std = torch.sqrt(var + eps)
z_hat = (z - mu) / std
# output_reshaped = params['weight_ln_tmp'] * z_hat + params['bias_ln_tmp'] + k
output = weight_ln_tmp * z_hat + bias_ln_tmp + q
return output
|