# -*- coding: utf-8 -*- from __future__ import annotations import math import warnings from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union, Dict import torch import torch.nn as nn import torch.utils.checkpoint from transformers.activations import ACT2FN from transformers.generation import GenerationMixin from transformers.modeling_outputs import (BaseModelOutputWithPast, CausalLMOutputWithPast) from dataclasses import dataclass from transformers.utils import ModelOutput @dataclass class BaseModelOutputWithPast_with_two_caches(ModelOutput): last_hidden_state: torch.FloatTensor = None past_key_values1: Optional[Tuple[Tuple[torch.FloatTensor]]] = None all_past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class CausalLMOutputWithPast_with_two_caches(ModelOutput): logits: torch.FloatTensor = None loss: Optional[torch.FloatTensor] = None past_key_values1: Optional[Tuple[Tuple[torch.FloatTensor]]] = None all_past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging # from fla.layers.attn import Attention from configuration_transformer_rnn import TransformerConfig_rnn import sys import os # # 添加当前目录的上上级目录到 Python 路径 # current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # sys.path.append(current_dir) # sys.path.append("/cpfs02/user/jiangyuhua/flash-linear-attention/fla/layers") # from attn_rnn import Attention_rnn ########################################################### # from attn_svd import Attention_svd ########################################################### # from attn import Attention ########################################################### # from gated_deltanet import GatedDeltaNet ########################################################### # from rwkv7 import RWKV7Attention ########################################################### # from attn_gated_delta import GatedDeltaNet_attention ########################################################### # from scattering_mixer2 import Scattering_Mixer ########################################################### from task_aware_delta_net import Task_Aware_Delta_Net ########################################################### # from moe_rnn import CustomGRUCell, CustomRNNCell from ttt_cross_layer import TTT_Cross_Layer # from fla.models.transformer.configuration_transformer import TransformerConfig from fla.models.utils import Cache from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss, RMSNorm) from fla.modules.activations import swiglu_linear from fla.modules.layernorm import rms_norm_linear if TYPE_CHECKING: from transformers.processing_utils import Unpack logger = logging.get_logger(__name__) class TransformerMLP(nn.Module): def __init__( self, hidden_size: int, hidden_ratio: Optional[int] = None, intermediate_size: Optional[int] = None, hidden_act: str = 'swish', norm_first: bool = True, norm_eps: float = 1e-5 ) -> TransformerMLP: super().__init__() self.hidden_size = hidden_size # the final number of params is `hidden_ratio * hidden_size^2` # `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio` if hidden_ratio is None: hidden_ratio = 4 if intermediate_size is None: intermediate_size = int(hidden_size * hidden_ratio * 2 / 3) intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256) self.hidden_ratio = hidden_ratio self.intermediate_size = intermediate_size self.norm_first = norm_first if norm_first: self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps) self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[hidden_act] def forward( self, x: torch.Tensor, **kwargs: Unpack[Any] ) -> torch.Tensor: if self.norm_first: x = rms_norm_linear(x, self.norm.weight, self.norm.bias, self.gate_proj.weight, self.gate_proj.bias) else: x = self.gate_proj(x) gate, y = x.chunk(2, -1) return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias) class TransformerMLP_svd(nn.Module): def __init__( self, hidden_size: int, hidden_ratio: Optional[int] = None, intermediate_size: Optional[int] = None, hidden_act: str = 'swish', norm_first: bool = True, norm_eps: float = 1e-5 ) -> TransformerMLP_svd: super().__init__() self.hidden_size = hidden_size # the final number of params is `hidden_ratio * hidden_size^2` # `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio` if hidden_ratio is None: hidden_ratio = 4 if intermediate_size is None: intermediate_size = int(hidden_size * hidden_ratio * 2 / 3) intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256) self.hidden_ratio = hidden_ratio self.intermediate_size = intermediate_size self.norm_first = norm_first if norm_first: self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps) self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[hidden_act] self.reflector_qkvo = nn.Linear(self.intermediate_size, self.hidden_size * 4) def forward( self, x: torch.Tensor, reflect: bool = False, **kwargs: Unpack[Any] ) -> torch.Tensor: if self.norm_first: x = rms_norm_linear(x, self.norm.weight, self.norm.bias, self.gate_proj.weight, self.gate_proj.bias) else: x = self.gate_proj(x) gate, y = x.chunk(2, -1) hidden_states = swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias) if reflect: reflector_qkvo = swiglu_linear(gate, y, self.reflector_qkvo.weight, self.reflector_qkvo.bias) reflector_qkvo = nn.Sigmoid()(reflector_qkvo) return hidden_states, reflector_qkvo else: return hidden_states class TransformerBlock_rnn(nn.Module): def __init__(self, config: TransformerConfig_rnn, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.layer_idx = layer_idx if not config.norm_first: self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps) self.head_dim = config.hidden_size // config.num_heads self.Task_Aware_Delta_Net = Task_Aware_Delta_Net( hidden_size=config.hidden_size, head_dim=self.head_dim, num_heads=config.num_heads, mode='chunk', rope_theta=config.rope_theta, max_position_embeddings=config.max_position_embeddings, norm_first=config.norm_first, norm_eps=config.norm_eps, layer_idx=layer_idx, concept_dim=config.concept_dim ) # use_ttt = True # if use_ttt: # self.rnn_router = TTT_Cross_Layer(config) # else: # self.rnn_router = CustomGRUCell(config) if not config.norm_first: self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps) self.mlp = TransformerMLP( hidden_size=config.hidden_size, hidden_ratio=config.hidden_ratio, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, norm_first=config.norm_first, norm_eps=config.norm_eps ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values1: Optional[Tuple[torch.Tensor]] = None, all_past_key_values: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, h_old: Optional[torch.Tensor] = None, rnn_router: Optional[nn.Module] = None, params: Optional[Dict] = None, **kwargs: Unpack[Any] ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states if hasattr(self, 'attn_norm'): hidden_states = self.attn_norm(hidden_states) hidden_states, attentions, past_key_values1, all_past_key_values, h_new, params = self.Task_Aware_Delta_Net( hidden_states=hidden_states, attention_mask=attention_mask, past_key_values1=past_key_values1, all_past_key_values=all_past_key_values, use_cache=use_cache, output_attentions=output_attentions, rnn_router=rnn_router, h_old=h_old, params=params, **kwargs ) # if self.rnn_router is not None: # hidden_states = self.rnn_router(hidden_states, **kwargs) if hasattr(self, 'mlp_norm'): hidden_states, residual = self.mlp_norm(hidden_states, residual, True) else: hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.mlp(hidden_states, **kwargs) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attentions,) if use_cache: outputs += (past_key_values1, all_past_key_values) outputs += (h_new,) outputs += (params,) return outputs class TransformerPreTrainedModel_rnn(PreTrainedModel): config_class = TransformerConfig_rnn supports_gradient_checkpointing = True _no_split_modules = ['TransformerBlock_rnn'] def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights( self, module: nn.Module, rescale_prenorm_residual: bool = False, num_residuals_per_layer: int = 2, ): if isinstance(module, (nn.Linear, nn.Conv1d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif hasattr(module, 'reset_parameters'): module.reset_parameters() if rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["o_proj.weight", "down_proj.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block # Following Pytorch init, except scale by 1/sqrt(2 * n_layer) # We need to reinit p since this code could be called multiple times # Having just p *= scale would repeatedly scale it down with torch.no_grad(): p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers) class TransformerModel_rnn(TransformerPreTrainedModel_rnn): def __init__( self, config: TransformerConfig_rnn ) -> TransformerModel_rnn: super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.concept_dim = config.concept_dim self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList([TransformerBlock_rnn(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]) self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps) self.gradient_checkpointing = False self.post_init() self.rnn_router = TTT_Cross_Layer(config) def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings = value def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values1: Optional[List[torch.FloatTensor]] = None, all_past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs: Unpack[Any] ) -> Union[Tuple, CausalLMOutputWithPast]: if output_attentions: warnings.warn( "`TransformerModel` does not support output attention weights now, so `output_attentions` is set to `False`." ) output_attentions = False output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is None and inputs_embeds is None: raise ValueError("You have to specify either input_ids or inputs_embeds") if use_cache and not isinstance(past_key_values1, Cache): past_key_values1 = Cache.from_legacy_cache(past_key_values1) if use_cache and not isinstance(all_past_key_values, Cache): all_past_key_values = Cache.from_legacy_cache(all_past_key_values) if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) # embed positions hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_attns = () if output_attentions else None next_cache1 = None next_cache2 = None h_old = None params = None for layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, past_key_values1, all_past_key_values, output_attentions, use_cache, h_old=h_old, params=params, rnn_router=self.rnn_router, **kwargs ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, past_key_values1=past_key_values1, all_past_key_values=all_past_key_values, output_attentions=output_attentions, use_cache=use_cache, h_old=h_old, params=params, rnn_router=self.rnn_router, **kwargs ) hidden_states = layer_outputs[0] h_old = layer_outputs[-2] params = layer_outputs[-1] if use_cache: next_cache1 = layer_outputs[2 if output_attentions else 1] next_cache2 = layer_outputs[3 if output_attentions else 2] if output_attentions: all_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, next_cache1, all_hidden_states, all_attns] if v is not None) # return BaseModelOutputWithPast_with_two_caches( # last_hidden_state=hidden_states, # past_key_values1=next_cache1, # all_past_key_values=next_cache2, # hidden_states=all_hidden_states, # attentions=all_attns # ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache1, hidden_states=all_hidden_states, attentions=all_attns ) class TransformerForCausalLM_rnn(TransformerPreTrainedModel_rnn, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = TransformerModel_rnn(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embeddings def set_input_embeddings(self, value): self.model.embeddings = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def prepare_inputs_for_generation( self, input_ids: torch.LongTensor = None, past_key_values1: Optional[Union[Cache, List[torch.FloatTensor]]] = None, all_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: bool = True, num_logits_to_keep: Optional[int] = None, **kwargs ): # only last token for `inputs_ids` if the `past_key_values` is passed along. if past_key_values1 is not None: input_ids = input_ids[:, -1:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values1 is None: model_inputs = {'inputs_embeds': inputs_embeds} else: # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise # recompiles graphs as the stride of the inputs is a guard. # Ref: https://github.com/huggingface/transformers/pull/29114 # TODO: use `next_tokens` directly instead. model_inputs = {'input_ids': input_ids.contiguous()} if num_logits_to_keep is not None: model_inputs['num_logits_to_keep'] = num_logits_to_keep # model_inputs.update({ # 'past_key_values1': past_key_values1, # 'all_past_key_values': all_past_key_values, # 'use_cache': use_cache, # 'attention_mask': attention_mask, # 'num_logits_to_keep': num_logits_to_keep, # }) model_inputs.update({ 'past_key_values1': past_key_values1, 'use_cache': use_cache, 'attention_mask': attention_mask, 'num_logits_to_keep': num_logits_to_keep, }) return model_inputs def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values1: Optional[Union[Cache, List[torch.FloatTensor]]] = None, all_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, num_logits_to_keep: Optional[int] = 0, **kwargs: Unpack[Any] ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, past_key_values1=past_key_values1, all_past_key_values=all_past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs ) hidden_states = outputs[0] fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:]) loss = None if labels is not None: if self.config.fuse_cross_entropy: if fuse_linear_and_cross_entropy: loss_fct = FusedLinearCrossEntropyLoss() else: loss_fct = FusedCrossEntropyLoss(inplace_backward=True) else: loss_fct = nn.CrossEntropyLoss() # Enable model parallelism # labels = labels.to(hidden_states.device) # labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1) if fuse_linear_and_cross_entropy: loss = loss_fct(hidden_states.view(-1, self.config.hidden_size), labels.view(-1), self.lm_head.weight, self.lm_head.bias) else: loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output # return CausalLMOutputWithPast_with_two_caches( # loss=loss, # logits=logits, # past_key_values1=outputs.past_key_values1, # all_past_key_values=outputs.all_past_key_values, # hidden_states=outputs.hidden_states, # attentions=outputs.attentions, # ) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) if __name__ == '__main__': config = TransformerConfig_rnn( concept_dim=128, attention_bias=False, bos_token_id=1, eos_token_id=2, fuse_cross_entropy=True, fuse_norm=True, hidden_act="swish", hidden_size=1024, initializer_range=0.02, max_position_embeddings=8192, model_type="transformer_rnn", num_heads=16, num_hidden_layers=24, norm_eps=1e-06, tie_word_embeddings=True, use_cache=True, vocab_size=32000, ) model = TransformerForCausalLM_rnn(config).cuda().to(torch.bfloat16) input_ids = torch.randint(0, 100, (2, 70)).cuda() attention_mask = torch.ones_like(input_ids).cuda() output = model(input_ids, attention_mask=attention_mask) print(output) print(output.loss) print(output.logits) print(output.all_past_key_values) print(output.hidden_states) print(output.attentions)