Z-Jafari commited on
Commit
ff048d1
·
verified ·
1 Parent(s): 5093db5

Model save

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: FacebookAI/xlm-roberta-large
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: xlm-roberta-large-finetuned-deduplicate_PersianQuAD
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # xlm-roberta-large-finetuned-deduplicate_PersianQuAD
16
+
17
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.7596
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 2e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 16
41
+ - seed: 42
42
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
43
+ - lr_scheduler_type: linear
44
+ - num_epochs: 3
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:----:|:---------------:|
51
+ | 0.8342 | 1.0 | 1456 | 0.6767 |
52
+ | 0.5078 | 2.0 | 2912 | 0.6708 |
53
+ | 0.3351 | 3.0 | 4368 | 0.7596 |
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.57.3
59
+ - Pytorch 2.9.0+cu126
60
+ - Datasets 4.0.0
61
+ - Tokenizers 0.22.1