--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer model-index: - name: xlm-roberta-large-finetuned-pquad-1epochs results: [] datasets: - Z-Jafari/PQuAD language: - fa metrics: - f1 - exact_match pipeline_tag: question-answering --- # xlm-roberta-large-finetuned-pquad-1epochs This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6493 - {'exact': 76.86828292926768, 'f1': 89.39013257952286, 'total': 8002, 'HasAns_exact': 71.63272010512483, 'HasAns_f1': 88.09130106789452, 'HasAns_total': 6088, 'NoAns_exact': 93.521421107628, 'NoAns_f1': 93.521421107628, 'NoAns_total': 1914, 'best_exact': 76.86828292926768, 'best_exact_thresh': 0.0, 'best_f1': 89.3901325795236, 'best_f1_thresh': 0.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5923 | 1.0 | 4020 | 0.6493 | ### Framework versions - Transformers 4.57.3 - Pytorch 2.9.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1