--- license: apache-2.0 base_model: Qwen/Qwen3-VL-30B-A3B-Instruct tags: - vision - qwen3-vl - fine-tuned - alpaca datasets: - Zaynoid/pathrep-processed-alpaca language: - en --- # Qwen3-VL-30B Fine-tuned on Alpaca Dataset This model is a fine-tuned version of [Qwen/Qwen3-VL-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-30B-A3B-Instruct) on the [Zaynoid/pathrep-processed-alpaca](https://huggingface.co/datasets/Zaynoid/pathrep-processed-alpaca) dataset. ## Training Details - **Base Model:** Qwen3-VL-30B-A3B-Instruct - **Fine-tuning Method:** LoRA (merged) - **Dataset:** pathrep-processed-alpaca - **Training Epochs:** 3 - **Final Training Loss:** 0.8265 ## Usage ```python import torch from transformers import AutoModelForVision2Seq, AutoProcessor model = AutoModelForVision2Seq.from_pretrained( "Zaynoid/qwen3vl-30b-alpaca-merged", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) processor = AutoProcessor.from_pretrained( "Zaynoid/qwen3vl-30b-alpaca-merged", trust_remote_code=True ) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Your question here"} ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor(text=text, return_tensors="pt").to(model.device) with torch.no_grad(): output_ids = model.generate(**inputs, max_new_tokens=512) response = processor.decode(output_ids[0], skip_special_tokens=True) print(response) ``` ## Training Configuration - LoRA r=64, alpha=128 - Learning rate: 2e-4 - Batch size: 1 (per device) - Gradient accumulation: 8 steps - Optimizer: AdamW with cosine LR schedule - Weight decay: 0.01 - Max gradient norm: 1.0