ZhijianShu commited on
Commit
a1f7a80
·
verified ·
1 Parent(s): 382dbe5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -46
README.md CHANGED
@@ -10,7 +10,7 @@ LiteVGGT is a 3D vision foundation model that significantly boosts vanilla VGGT'
10
  This model was presented in the paper: [LiteVGGT: Boosting Vanilla VGGT via Geometry-aware Cached Token Merging](https://huggingface.co/papers/2512.04939).
11
 
12
  - 🏠 [Project Page](https://garlicba.github.io/LiteVGGT/)
13
- - \ud83d\udcbb [Code](https://github.com/GarlicBa/LiteVGGT-repo)
14
 
15
  ## Overview
16
 
@@ -24,48 +24,35 @@ For 1000 input images, LiteVGGT achieves a **10\u00d7 speedup** over VGGT while
24
 
25
  To quickly try out LiteVGGT for 3D reconstruction, follow these steps:
26
 
27
- 1. **Environment Setup:**
28
- First, create a virtual environment using Conda, clone this repository to your local machine, and install the required dependencies.
29
-
30
- ```bash
31
- conda create -n litevggt python=3.10
32
- conda activate litevggt
33
- git clone git@github.com:GarlicBa/LiteVGGT-repo.git
34
- cd LiteVGGT-repo
35
- pip install -r requirements.txt
36
- ```
37
-
38
- 2. **Install Transformer Engine:**
39
- Install the Transformer Engine package following its official installation requirements (see https://github.com/NVIDIA/TransformerEngine):
40
-
41
- ```bash
42
- export CC=your/gcc/path
43
- export CXX=your/g++/path
44
- pip install --no-build-isolation transformer_engine[pytorch]
45
- ```
46
-
47
- 3. **Download Checkpoint:**
48
- Then, download our LiteVGGT checkpoint that has been **finetuned** and **TE-remapped**:
49
- ```bash
50
- wget https://huggingface.co/ZhijianShu/LiteVGGT/resolve/main/te_dict.pt
51
- ```
52
-
53
- 4. **Run Inference:**
54
- ```bash
55
- python run_demo.py \
56
- --ckpt_path path/to/your/te_dict.pt \
57
- --img_dir path/to/your/img_dir \
58
- --output_dir ./recon_result \
59
- ```
60
-
61
- ## Citation
62
-
63
- If you find this project helpful, citing our paper would be greatly appreciated:
64
- ```bibtex
65
- @inproceedings{wang2025vggt,
66
- title={VGGT: Visual Geometry Grounded Transformer},
67
- author={Wang, Jianyuan and Chen, Minghao and Karaev, Nikita and Vedaldi, Andrea and Rupprecht, Christian and Novotny, David},
68
- booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
69
- year={2025}
70
- }
71
- ```
 
10
  This model was presented in the paper: [LiteVGGT: Boosting Vanilla VGGT via Geometry-aware Cached Token Merging](https://huggingface.co/papers/2512.04939).
11
 
12
  - 🏠 [Project Page](https://garlicba.github.io/LiteVGGT/)
13
+ - [Code](https://github.com/GarlicBa/LiteVGGT-repo)
14
 
15
  ## Overview
16
 
 
24
 
25
  To quickly try out LiteVGGT for 3D reconstruction, follow these steps:
26
 
27
+
28
+ First, create a virtual environment using Conda, clone this repository to your local machine, and install the required dependencies.
29
+
30
+ ```bash
31
+ conda create -n litevggt python=3.10
32
+ conda activate litevggt
33
+ git clone git@github.com:GarlicBa/LiteVGGT-repo.git
34
+ cd LiteVGGT-repo
35
+ pip install -r requirements.txt
36
+ ```
37
+
38
+ Install the Transformer Engine package following its official installation requirements (see https://github.com/NVIDIA/TransformerEngine):
39
+
40
+ ```bash
41
+ export CC=your/gcc/path
42
+ export CXX=your/g++/path
43
+ pip install --no-build-isolation transformer_engine[pytorch]
44
+ ```
45
+
46
+ Then, download our LiteVGGT checkpoint that has been **finetuned** and **TE-remapped**:
47
+ ```bash
48
+ wget https://huggingface.co/ZhijianShu/LiteVGGT/resolve/main/te_dict.pt
49
+ ```
50
+
51
+ Finally:
52
+ ```bash
53
+ python run_demo.py \
54
+ --ckpt_path path/to/your/te_dict.pt \
55
+ --img_dir path/to/your/img_dir \
56
+ --output_dir ./recon_result \
57
+ ```
58
+