Upload validate_multiGen.py
Browse files
4 _ LLM (Gemini)/aspect-identification/validate_multiGen.py
ADDED
|
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import os
|
| 4 |
+
from sklearn.metrics import accuracy_score, hamming_loss, f1_score
|
| 5 |
+
|
| 6 |
+
def validate_single_aspect(pred_df, gt_df, aspect):
|
| 7 |
+
"""Validate a single aspect column"""
|
| 8 |
+
y_pred = pred_df[aspect].fillna('0').astype(str)
|
| 9 |
+
y_true = gt_df[aspect].fillna('0').astype(str)
|
| 10 |
+
|
| 11 |
+
accuracy = accuracy_score(y_true, y_pred)
|
| 12 |
+
|
| 13 |
+
print(f"\n=== {aspect.upper()} ASPECT ===")
|
| 14 |
+
print(f"Accuracy: {accuracy:.4f}")
|
| 15 |
+
|
| 16 |
+
return {
|
| 17 |
+
'aspect': aspect,
|
| 18 |
+
'accuracy': accuracy
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
def calculate_exact_match_metrics(pred_df, gt_df, aspects):
|
| 22 |
+
"""Calculate exact set matching metrics and hamming loss"""
|
| 23 |
+
correct_samples = 0
|
| 24 |
+
total_samples = len(pred_df)
|
| 25 |
+
|
| 26 |
+
# For precision, recall, F1 - treat each sample as binary (all correct vs not all correct)
|
| 27 |
+
y_true_binary = []
|
| 28 |
+
y_pred_binary = []
|
| 29 |
+
|
| 30 |
+
# For hamming loss calculation
|
| 31 |
+
y_true_matrix = []
|
| 32 |
+
y_pred_matrix = []
|
| 33 |
+
|
| 34 |
+
for i in range(total_samples):
|
| 35 |
+
# Check if all aspects match for this sample
|
| 36 |
+
all_correct = True
|
| 37 |
+
sample_true = []
|
| 38 |
+
sample_pred = []
|
| 39 |
+
|
| 40 |
+
for aspect in aspects:
|
| 41 |
+
pred_val = str(pred_df.loc[i, aspect]) if pd.notna(pred_df.loc[i, aspect]) else '0'
|
| 42 |
+
true_val = str(gt_df.loc[i, aspect]) if pd.notna(gt_df.loc[i, aspect]) else '0'
|
| 43 |
+
|
| 44 |
+
# Convert to binary for hamming loss
|
| 45 |
+
sample_true.append(1 if true_val != '0' else 0)
|
| 46 |
+
sample_pred.append(1 if pred_val != '0' else 0)
|
| 47 |
+
|
| 48 |
+
if pred_val != true_val:
|
| 49 |
+
all_correct = False
|
| 50 |
+
|
| 51 |
+
if all_correct:
|
| 52 |
+
correct_samples += 1
|
| 53 |
+
|
| 54 |
+
# Add to matrices for hamming loss
|
| 55 |
+
y_true_matrix.append(sample_true)
|
| 56 |
+
y_pred_matrix.append(sample_pred)
|
| 57 |
+
|
| 58 |
+
# binary classification metrics (1 = all correct, 0 = not all correct)
|
| 59 |
+
y_true_binary.append(1) # Ground truth is always "all should be correct"
|
| 60 |
+
y_pred_binary.append(1 if all_correct else 0) # Prediction success
|
| 61 |
+
|
| 62 |
+
# Calculate metrics
|
| 63 |
+
exact_match_accuracy = correct_samples / total_samples
|
| 64 |
+
|
| 65 |
+
# Calculate hamming loss
|
| 66 |
+
h_loss = hamming_loss(y_true_matrix, y_pred_matrix)
|
| 67 |
+
|
| 68 |
+
return exact_match_accuracy, correct_samples, total_samples, h_loss, y_pred_matrix, y_true_matrix
|
| 69 |
+
|
| 70 |
+
def get_true_pred_aspects(pred_df: pd.DataFrame, gt_df: pd.DataFrame, aspect: str) -> list:
|
| 71 |
+
result = []
|
| 72 |
+
has_text = 'Review' in gt_df.columns
|
| 73 |
+
|
| 74 |
+
for i in range(len(pred_df)):
|
| 75 |
+
pred_val = str(pred_df.loc[i, aspect]).strip().lower() if pd.notna(pred_df.loc[i, aspect]) else '0'
|
| 76 |
+
true_val = str(gt_df.loc[i, aspect]).strip().lower() if pd.notna(gt_df.loc[i, aspect]) else '0'
|
| 77 |
+
|
| 78 |
+
predicted_binary = 1 if pred_val != '0' else 0
|
| 79 |
+
actual_binary = 1 if true_val != '0' else 0
|
| 80 |
+
|
| 81 |
+
sample_data = {
|
| 82 |
+
'predicted': predicted_binary,
|
| 83 |
+
'actual': actual_binary,
|
| 84 |
+
'predicted_value': pred_val,
|
| 85 |
+
'actual_value': true_val,
|
| 86 |
+
'index': i
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
if has_text:
|
| 90 |
+
# 'Review' from gt_df
|
| 91 |
+
sample_data['Review'] = str(gt_df.loc[i, 'Review'])
|
| 92 |
+
|
| 93 |
+
result.append(sample_data)
|
| 94 |
+
|
| 95 |
+
return result
|
| 96 |
+
|
| 97 |
+
def identification_error_analysis(pred_df: pd.DataFrame, gt_df: pd.DataFrame, aspects: list) -> dict:
|
| 98 |
+
"""Analyze common identification errors for all aspects."""
|
| 99 |
+
analysis = {
|
| 100 |
+
'aspect': {}
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
for aspect in aspects:
|
| 104 |
+
if aspect not in pred_df.columns or aspect not in gt_df.columns:
|
| 105 |
+
continue
|
| 106 |
+
|
| 107 |
+
results = get_true_pred_aspects(pred_df, gt_df, aspect)
|
| 108 |
+
|
| 109 |
+
fp = [r for r in results if r['predicted'] == 1 and r['actual'] == 0] # False Positives (FP): Predicted 1, Actual 0 (Aspect *wrongly* identified)
|
| 110 |
+
fn = [r for r in results if r['predicted'] == 0 and r['actual'] == 1] # False Negatives (FN): Predicted 0, Actual 1 (Aspect *missed*)
|
| 111 |
+
|
| 112 |
+
tp = [r for r in results if r['predicted'] == 1 and r['actual'] == 1] # True Positives (TP): Predicted 1, Actual 1
|
| 113 |
+
tn = [r for r in results if r['predicted'] == 0 and r['actual'] == 0] # True Negatives (TN): Predicted 0, Actual 0
|
| 114 |
+
|
| 115 |
+
precision = len(tp) / (len(tp) + len(fp)) if (len(tp) + len(fp)) > 0 else 0.0 # Precision = TP / (TP + FP)
|
| 116 |
+
recall = len(tp) / (len(tp) + len(fn)) if (len(tp) + len(fn)) > 0 else 0.0 # Recall = TP / (TP + FN)
|
| 117 |
+
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0 # F1 Score = 2 * (Precision * Recall) / (Precision + Recall)
|
| 118 |
+
|
| 119 |
+
analysis['aspect'][aspect] = {
|
| 120 |
+
'true_positives': len(tp),
|
| 121 |
+
'true_negatives': len(tn),
|
| 122 |
+
'false_positives': len(fp),
|
| 123 |
+
'false_negatives': len(fn),
|
| 124 |
+
'precision': precision,
|
| 125 |
+
'recall': recall,
|
| 126 |
+
'f1_score': f1_score,
|
| 127 |
+
'fp_examples': fp[:5], # Top 5 examples
|
| 128 |
+
'fn_examples': fn[:5] # Top 5 examples
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
return analysis
|
| 132 |
+
|
| 133 |
+
def save_error_analysis(analysis: dict, analysis_file: str):
|
| 134 |
+
"""Save error analysis results to a file."""
|
| 135 |
+
results_text = ["Error Analysis: Aspect Identification\n" + "="*50 + "\n"]
|
| 136 |
+
|
| 137 |
+
for aspect, data in analysis['aspect'].items():
|
| 138 |
+
results_text.append(f"\n--- {aspect.upper()} ASPECT ---\n")
|
| 139 |
+
results_text.append(f"Precision: {data['precision']:.4f}")
|
| 140 |
+
results_text.append(f"Recall: {data['recall']:.4f}")
|
| 141 |
+
results_text.append(f"F1: {data['f1_score']:.4f}")
|
| 142 |
+
results_text.append(f"True Positives (TP): {data['true_positives']}")
|
| 143 |
+
results_text.append(f"False Positives (FP - Aspect *wrongly* identified): {data['false_positives']}")
|
| 144 |
+
results_text.append(f"False Negatives (FN - Aspect *missed*): {data['false_negatives']}")
|
| 145 |
+
results_text.append(f"True Negatives (TN): {data['true_negatives']}")
|
| 146 |
+
|
| 147 |
+
# FP Examples
|
| 148 |
+
results_text.append("\nTOP 5 FALSE POSITIVE EXAMPLES (Model identified, but Ground Truth said '0'):")
|
| 149 |
+
for i, fp_ex in enumerate(data['fp_examples']):
|
| 150 |
+
text = fp_ex.get('Review', f"[Review text not available, index: {fp_ex['index']}]")
|
| 151 |
+
results_text.append(f" {i+1}. Pred Val: '{fp_ex['predicted_value']}'. Text: \"{text[:100]}...\"")
|
| 152 |
+
|
| 153 |
+
# FN Examples
|
| 154 |
+
results_text.append("\nTOP 5 FALSE NEGATIVE EXAMPLES (Model missed, but Ground Truth said *a value*):")
|
| 155 |
+
for i, fn_ex in enumerate(data['fn_examples']):
|
| 156 |
+
text = fn_ex.get('Review', f"[Review text not available, index: {fn_ex['index']}]")
|
| 157 |
+
results_text.append(f" {i+1}. Actual Val: '{fn_ex['actual_value']}'. Text: \"{text[:100]}...\"")
|
| 158 |
+
|
| 159 |
+
# Save results to text file
|
| 160 |
+
with open(analysis_file, 'w', encoding='utf-8') as f:
|
| 161 |
+
f.write('\n'.join(results_text))
|
| 162 |
+
print(f"\nError analysis has been saved to {analysis_file}")
|
| 163 |
+
|
| 164 |
+
def save_result_txt(results: dict, results_file: str):
|
| 165 |
+
# Save results to text file
|
| 166 |
+
with open(results_file, 'w', encoding='utf-8') as f:
|
| 167 |
+
f.write('\n'.join(results['results_text']))
|
| 168 |
+
print(f"\nResults saved to {results_file}")
|
| 169 |
+
|
| 170 |
+
def validate_all_aspects(predicted_file: str, ground_truth_file: str, aspects: list,
|
| 171 |
+
results_file: str, error_analysis_file: str) -> dict:
|
| 172 |
+
"""Main validation function"""
|
| 173 |
+
# Load data
|
| 174 |
+
pred_df = pd.read_csv(predicted_file)
|
| 175 |
+
gt_df = pd.read_csv(ground_truth_file)
|
| 176 |
+
|
| 177 |
+
print(f"Predicted data shape: {pred_df.shape}")
|
| 178 |
+
print(f"Ground truth data shape: {gt_df.shape}")
|
| 179 |
+
|
| 180 |
+
# Check if dataframes have the same length before proceeding
|
| 181 |
+
if len(pred_df) != len(gt_df):
|
| 182 |
+
print("ERROR: Predicted and Ground Truth files have different number of rows.")
|
| 183 |
+
return {}
|
| 184 |
+
|
| 185 |
+
# Store results for text file
|
| 186 |
+
results_text = []
|
| 187 |
+
results_text.append(f"Validation Results\n{'='*50}\n")
|
| 188 |
+
|
| 189 |
+
# Validate each aspect
|
| 190 |
+
aspect_results = []
|
| 191 |
+
|
| 192 |
+
for aspect in aspects:
|
| 193 |
+
if aspect in pred_df.columns and aspect in gt_df.columns:
|
| 194 |
+
result = validate_single_aspect(pred_df, gt_df, aspect)
|
| 195 |
+
aspect_results.append(result)
|
| 196 |
+
results_text.append(f"\n{aspect.upper()} ASPECT")
|
| 197 |
+
results_text.append(f"Accuracy: {result['accuracy']:.4f}")
|
| 198 |
+
else:
|
| 199 |
+
print(f"WARNING: '{aspect}' column not found in both files")
|
| 200 |
+
results_text.append(f"\nWARNING: '{aspect}' column not found in both files")
|
| 201 |
+
|
| 202 |
+
# Combined metrics
|
| 203 |
+
valid_aspects = [aspect for aspect in aspects
|
| 204 |
+
if aspect in pred_df.columns and aspect in gt_df.columns]
|
| 205 |
+
|
| 206 |
+
if valid_aspects:
|
| 207 |
+
combined_accuracy, correct_count, total_count, hamming_loss_score, y_true_matrix, y_pred_matrix = \
|
| 208 |
+
calculate_exact_match_metrics(pred_df, gt_df, valid_aspects)
|
| 209 |
+
|
| 210 |
+
if y_true_matrix:
|
| 211 |
+
# Calculate micro and macro F1 scores
|
| 212 |
+
micro_f1 = f1_score(y_true_matrix, y_pred_matrix, average='micro')
|
| 213 |
+
macro_f1 = f1_score(y_true_matrix, y_pred_matrix, average='macro')
|
| 214 |
+
|
| 215 |
+
results_text.append(f"\n{'='*50}")
|
| 216 |
+
results_text.append("EXACT MATCH (ALL ASPECTS)")
|
| 217 |
+
results_text.append(f"{'='*50}")
|
| 218 |
+
results_text.append(f"Samples with ALL aspects correct: {correct_count}/{total_count}")
|
| 219 |
+
results_text.append(f"Accuracy: {combined_accuracy:.4f}")
|
| 220 |
+
results_text.append(f"Hamming Loss: {hamming_loss_score:.4f}")
|
| 221 |
+
results_text.append(f"Micro F1 Score (Multi-Aspect): {micro_f1:.4f}")
|
| 222 |
+
results_text.append(f"Macro F1 Score (Multi-Aspect): {macro_f1:.4f}")
|
| 223 |
+
|
| 224 |
+
save_result_txt({'results_text': results_text}, results_file)
|
| 225 |
+
|
| 226 |
+
# --- Error Analysis ---
|
| 227 |
+
if valid_aspects:
|
| 228 |
+
error_analysis_results = identification_error_analysis(pred_df, gt_df, valid_aspects)
|
| 229 |
+
save_error_analysis(error_analysis_results, error_analysis_file)
|
| 230 |
+
|
| 231 |
+
return {
|
| 232 |
+
'results_text': results_text,
|
| 233 |
+
'aspect_results': aspect_results,
|
| 234 |
+
'combined_accuracy': combined_accuracy,
|
| 235 |
+
'correct_count': correct_count,
|
| 236 |
+
'total_count': total_count,
|
| 237 |
+
'hamming_loss': hamming_loss_score,
|
| 238 |
+
'micro_f1': micro_f1,
|
| 239 |
+
'macro_f1': macro_f1
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
def calculate_overall_performance(general_aspect_mapping: dict, error_analysis_files: dict) -> dict:
|
| 243 |
+
"""Calculate overall performance metrics for each general aspect group.
|
| 244 |
+
|
| 245 |
+
Args:
|
| 246 |
+
general_aspect_mapping: Dictionary mapping general aspects to their specific aspects
|
| 247 |
+
error_analysis_files: Dictionary mapping general aspects to their error analysis file paths
|
| 248 |
+
|
| 249 |
+
Returns:
|
| 250 |
+
Dictionary containing aggregated metrics for each general aspect
|
| 251 |
+
"""
|
| 252 |
+
overall_results = {}
|
| 253 |
+
|
| 254 |
+
for general_aspect, specific_aspects in general_aspect_mapping.items():
|
| 255 |
+
specific_aspects = [aspect.lower() for aspect in specific_aspects]
|
| 256 |
+
# Initialize counters for this general aspect
|
| 257 |
+
total_tp = 0
|
| 258 |
+
total_fp = 0
|
| 259 |
+
total_tn = 0
|
| 260 |
+
total_fn = 0
|
| 261 |
+
|
| 262 |
+
# Load error analysis file for this general aspect
|
| 263 |
+
error_analysis_file = error_analysis_files[general_aspect]
|
| 264 |
+
with open(error_analysis_file, 'r', encoding='utf-8') as f:
|
| 265 |
+
lines = f.readlines()
|
| 266 |
+
|
| 267 |
+
# Process each specific aspect's metrics
|
| 268 |
+
current_aspect = None
|
| 269 |
+
for line in lines:
|
| 270 |
+
line = line.strip()
|
| 271 |
+
if line.startswith('---') and line.endswith('---') and 'ASPECT' in line:
|
| 272 |
+
# Extract aspect name and clean it, removing 'ASPECT' and dashes
|
| 273 |
+
current_aspect = line.replace('-', '').replace('ASPECT', '').strip().lower()
|
| 274 |
+
continue
|
| 275 |
+
|
| 276 |
+
if current_aspect in specific_aspects:
|
| 277 |
+
if 'True Positives (TP):' in line:
|
| 278 |
+
total_tp += int(line.split(':')[1].strip())
|
| 279 |
+
elif 'False Positives (FP' in line:
|
| 280 |
+
total_fp += int(line.split(':')[1].strip())
|
| 281 |
+
elif 'False Negatives (FN' in line:
|
| 282 |
+
total_fn += int(line.split(':')[1].strip())
|
| 283 |
+
elif 'True Negatives (TN):' in line:
|
| 284 |
+
total_tn += int(line.split(':')[1].strip())
|
| 285 |
+
|
| 286 |
+
# Calculate overall metrics for this general aspect
|
| 287 |
+
precision = total_tp / (total_tp + total_fp) if (total_tp + total_fp) > 0 else 0.0
|
| 288 |
+
recall = total_tp / (total_tp + total_fn) if (total_tp + total_fn) > 0 else 0.0
|
| 289 |
+
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
|
| 290 |
+
accuracy = (total_tp + total_tn) / (total_tp + total_tn + total_fp + total_fn) if (total_tp + total_tn + total_fp + total_fn) > 0 else 0.0
|
| 291 |
+
|
| 292 |
+
overall_results[general_aspect] = {
|
| 293 |
+
'true_positives': total_tp,
|
| 294 |
+
'false_positives': total_fp,
|
| 295 |
+
'true_negatives': total_tn,
|
| 296 |
+
'false_negatives': total_fn,
|
| 297 |
+
'precision': precision,
|
| 298 |
+
'recall': recall,
|
| 299 |
+
'f1_score': f1_score,
|
| 300 |
+
'accuracy': accuracy,
|
| 301 |
+
'specific_aspects': specific_aspects
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
return overall_results
|
| 305 |
+
|
| 306 |
+
def save_overall_results(results: dict, output_file: str):
|
| 307 |
+
"""Save overall performance results to a file."""
|
| 308 |
+
with open(output_file, 'w', encoding='utf-8') as f:
|
| 309 |
+
f.write("Overall Performance by General Aspect\n")
|
| 310 |
+
f.write("=" * 50 + "\n\n")
|
| 311 |
+
|
| 312 |
+
for general_aspect, metrics in results.items():
|
| 313 |
+
f.write(f"=== {general_aspect.upper()} ===\n")
|
| 314 |
+
f.write(f"Specific aspects included: {', '.join(metrics['specific_aspects'])}\n\n")
|
| 315 |
+
f.write(f"Aggregated Metrics:\n")
|
| 316 |
+
f.write(f"True Positives (TP): {metrics['true_positives']}\n")
|
| 317 |
+
f.write(f"False Positives (FP): {metrics['false_positives']}\n")
|
| 318 |
+
f.write(f"True Negatives (TN): {metrics['true_negatives']}\n")
|
| 319 |
+
f.write(f"False Negatives (FN): {metrics['false_negatives']}\n")
|
| 320 |
+
f.write(f"Accuracy: {metrics['accuracy']:.4f}\n")
|
| 321 |
+
f.write(f"Precision: {metrics['precision']:.4f}\n")
|
| 322 |
+
f.write(f"Recall: {metrics['recall']:.4f}\n")
|
| 323 |
+
f.write(f"F1 Score: {metrics['f1_score']:.4f}\n\n")
|
| 324 |
+
|
| 325 |
+
print(f"Overall results saved to {output_file}")
|
| 326 |
+
|
| 327 |
+
# Example usage:
|
| 328 |
+
# general_aspect_mapping = {
|
| 329 |
+
# 'price': ['price_value', 'price_comparison', 'price_discount'],
|
| 330 |
+
# 'quality': ['quality_material', 'quality_durability', 'quality_defects']
|
| 331 |
+
# }
|
| 332 |
+
#
|
| 333 |
+
# error_analysis_files = {
|
| 334 |
+
# 'price': 'results/price_error_analysis.txt',
|
| 335 |
+
# 'quality': 'results/quality_error_analysis.txt'
|
| 336 |
+
# }
|
| 337 |
+
#
|
| 338 |
+
# results = calculate_overall_performance(general_aspect_mapping, error_analysis_files)
|
| 339 |
+
# save_overall_results(results, 'results/overall_performance.txt')
|