Create README.md
Browse files
README.md
CHANGED
|
@@ -1,50 +1,97 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
-
|
| 4 |
-
|
| 5 |
-
-
|
| 6 |
-
|
| 7 |
---
|
| 8 |
|
| 9 |
-
|
| 10 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
## Model description
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
- train_batch_size: 18
|
| 35 |
-
- eval_batch_size: 8
|
| 36 |
-
- seed: 1
|
| 37 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 38 |
-
- lr_scheduler_type: linear
|
| 39 |
-
- num_epochs: 5
|
| 40 |
|
| 41 |
-
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
|
|
|
| 44 |
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- ko
|
| 4 |
+
metrics:
|
| 5 |
+
- accuracy
|
| 6 |
+
library_name: transformers
|
| 7 |
---
|
| 8 |
|
| 9 |
+
# KLUE Robeta-base for legal documents
|
|
|
|
| 10 |
|
| 11 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 12 |
|
| 13 |
+
- KLUE/Robeta-Base Model을 판결문으로 이뤄진 legal_text_merged02_light.txt 파일을 사용하여 재학습 시킨 모델입니다.
|
| 14 |
|
|
|
|
| 15 |
|
| 16 |
+
## Model Details
|
| 17 |
|
| 18 |
+
### Model Description
|
| 19 |
|
| 20 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 21 |
|
| 22 |
+
- **Developed by:** J.Park @ KETI
|
| 23 |
+
- **Model type:** klue/roberta-base
|
| 24 |
+
- **Language(s) (NLP):** korean
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
+
### 학습 방법
|
| 29 |
|
| 30 |
+
```python
|
| 31 |
|
| 32 |
+
from transformers import RobertaTokenizer, RobertaForMaskedLM
|
| 33 |
+
from transformers import AutoModel, AutoTokenizer
|
| 34 |
|
| 35 |
+
model = RobertaForMaskedLM.from_pretrained(base_model)
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(base_tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
from transformers import LineByLineTextDataset
|
| 39 |
|
| 40 |
+
dataset = LineByLineTextDataset(
|
| 41 |
+
tokenizer=tokenizer,
|
| 42 |
+
file_path=fpath_dataset,
|
| 43 |
+
block_size=512,
|
| 44 |
+
)
|
| 45 |
|
| 46 |
+
from transformers import DataCollatorForLanguageModeling
|
| 47 |
|
| 48 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 49 |
+
tokenizer=tokenizer, mlm=True, mlm_probability=0.15
|
| 50 |
+
)
|
| 51 |
|
| 52 |
+
from transformers import Trainer, TrainingArguments
|
| 53 |
+
|
| 54 |
+
training_args = TrainingArguments(
|
| 55 |
+
output_dir=output_dir,
|
| 56 |
+
overwrite_output_dir=True,
|
| 57 |
+
num_train_epochs=5,
|
| 58 |
+
per_device_train_batch_size=18,
|
| 59 |
+
save_steps=100,
|
| 60 |
+
save_total_limit=2,
|
| 61 |
+
seed=1
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
trainer = Trainer(
|
| 65 |
+
model=model,
|
| 66 |
+
args=training_args,
|
| 67 |
+
data_collator=data_collator,
|
| 68 |
+
train_dataset=dataset
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
train_metrics = trainer.train()
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
trainer.save_model(output_dir)
|
| 75 |
+
trainer.push_to_hub()
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
### 학습용 configuration
|
| 79 |
+
|
| 80 |
+
- number of epochs
|
| 81 |
+
```bash
|
| 82 |
+
epochs = 50
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
- JSON file
|
| 86 |
+
```json
|
| 87 |
+
[
|
| 88 |
+
{'basemodel' : 'againeureka/klue_roberta_base_for_legal',
|
| 89 |
+
'basetokenizer' : 'klue/roberta-base',
|
| 90 |
+
'trainmodel' : 'againeureka/toulmin_classifier8_klue_roberta_base_retrained6',
|
| 91 |
+
'batchsize' : 92,
|
| 92 |
+
'epochs' : epochs,
|
| 93 |
+
'push_to_hub' : True,
|
| 94 |
+
'is_on' : True,
|
| 95 |
+
},
|
| 96 |
+
]
|
| 97 |
+
```
|