alexnvo commited on
Commit
7ae401f
·
verified ·
1 Parent(s): 784bb29

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +183 -0
README.md ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "stabilityai/stable-diffusion-3.5-medium"
4
+ tags:
5
+ - sd3
6
+ - sd3-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - not-for-all-audiences
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'a portrait of a nude emver1rev1 in a room sitting on a sofa with her legs spread wide.'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ ---
27
+
28
+ # ematest
29
+
30
+ This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-3.5-medium](https://huggingface.co/stabilityai/stable-diffusion-3.5-medium).
31
+
32
+
33
+ The main validation prompt used during training was:
34
+ ```
35
+ a portrait of a nude emver1rev1 in a room sitting on a sofa with her legs spread wide.
36
+ ```
37
+
38
+
39
+ ## Validation settings
40
+ - CFG: `4.0`
41
+ - CFG Rescale: `0.0`
42
+ - Steps: `30`
43
+ - Sampler: `FlowMatchEulerDiscreteScheduler`
44
+ - Seed: `42`
45
+ - Resolution: `1024x1024`
46
+ - Skip-layer guidance:
47
+ skip_guidance_layers=[7, 8, 9],
48
+
49
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
50
+
51
+ You can find some example images in the following gallery:
52
+
53
+
54
+ <Gallery />
55
+
56
+ The text encoder **was not** trained.
57
+ You may reuse the base model text encoder for inference.
58
+
59
+
60
+ ## Training settings
61
+
62
+ - Training epochs: 5
63
+ - Training steps: 100
64
+ - Learning rate: 1e-06
65
+ - Learning rate schedule: polynomial
66
+ - Warmup steps: 1084
67
+ - Max grad norm: 0.01
68
+ - Effective batch size: 6
69
+ - Micro-batch size: 6
70
+ - Gradient accumulation steps: 1
71
+ - Number of GPUs: 1
72
+ - Gradient checkpointing: True
73
+ - Prediction type: flow-matching (extra parameters=['flux_schedule_auto_shift', 'shift=0.0', 'flux_use_uniform_schedule'])
74
+ - Optimizer: adamw_bf16
75
+ - Trainable parameter precision: Pure BF16
76
+ - Caption dropout probability: 10.0%
77
+
78
+ ### LyCORIS Config:
79
+ ```json
80
+ {
81
+ "bypass_mode": true,
82
+ "algo": "lokr",
83
+ "multiplier": 1.0,
84
+ "full_matrix": true,
85
+ "linear_dim": 10000,
86
+ "linear_alpha": 1,
87
+ "factor": 4,
88
+ "apply_preset": {
89
+ "target_module": [
90
+ "Attention",
91
+ "FeedForward"
92
+ ],
93
+ "module_algo_map": {
94
+ "FeedForward": {
95
+ "factor": 4
96
+ },
97
+ "Attention": {
98
+ "factor": 2
99
+ }
100
+ }
101
+ }
102
+ }
103
+ ```
104
+
105
+ ## Datasets
106
+
107
+ ### emver1rev1
108
+ - Repeats: 0
109
+ - Total number of images: 102
110
+ - Total number of aspect buckets: 1
111
+ - Resolution: 1.0 megapixels
112
+ - Cropped: true
113
+ - Crop style: center
114
+ - Crop aspect: square
115
+ - Used for regularisation data: No
116
+
117
+
118
+ ## Inference
119
+
120
+
121
+ ```python
122
+ import torch
123
+ from diffusers import DiffusionPipeline
124
+ from lycoris import create_lycoris_from_weights
125
+
126
+
127
+ def download_adapter(repo_id: str):
128
+ import os
129
+ from huggingface_hub import hf_hub_download
130
+ adapter_filename = "pytorch_lora_weights.safetensors"
131
+ cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
132
+ cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
133
+ path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
134
+ path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
135
+ os.makedirs(path_to_adapter, exist_ok=True)
136
+ hf_hub_download(
137
+ repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
138
+ )
139
+
140
+ return path_to_adapter_file
141
+
142
+ model_id = 'stabilityai/stable-diffusion-3.5-medium'
143
+ adapter_repo_id = 'alexnvo/ematest'
144
+ adapter_filename = 'pytorch_lora_weights.safetensors'
145
+ adapter_file_path = download_adapter(repo_id=adapter_repo_id)
146
+ pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
147
+ lora_scale = 1.0
148
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
149
+ wrapper.merge_to()
150
+
151
+ prompt = "a portrait of a nude emver1rev1 in a room sitting on a sofa with her legs spread wide."
152
+ negative_prompt = 'blurry, cropped, ugly'
153
+
154
+ ## Optional: quantise the model to save on vram.
155
+ ## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
156
+ from optimum.quanto import quantize, freeze, qint8
157
+ quantize(pipeline.transformer, weights=qint8)
158
+ freeze(pipeline.transformer)
159
+
160
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
161
+ image = pipeline(
162
+ prompt=prompt,
163
+ negative_prompt=negative_prompt,
164
+ num_inference_steps=30,
165
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
166
+ width=1024,
167
+ height=1024,
168
+ guidance_scale=4.0,
169
+ skip_guidance_layers=[7, 8, 9],
170
+ ).images[0]
171
+ image.save("output.png", format="PNG")
172
+ ```
173
+
174
+
175
+
176
+ ## Exponential Moving Average (EMA)
177
+
178
+ SimpleTuner generates a safetensors variant of the EMA weights and a pt file.
179
+
180
+ The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.
181
+
182
+ The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.
183
+