Overview
invoices-donut-merged is the LoRA adapter merged back into the base weights of numind/NuExtract-2.0-4B.
It behaves like a fully fine-tuned model but trained using efficient LoRA adapters.
This makes it production-ready: no need to separately load base + adapters.
Intended Use
- Extracting structured JSON fields from invoice images:
- Invoice number, date
- Seller/client details
- Tax IDs, IBAN
- Item descriptions, prices, VAT
- Totals (net, VAT, gross)
- Not intended for general document OCR outside invoices.
Training Details
- Base model: Qwen/Qwen2.5-VL-3B-Instruct
- Framework: Hugging Face TRL (SFTTrainer) with PEFT/LoRA
- LoRA config:
- Rank (r): 8
- Alpha: 32
- Target modules: q_proj, v_proj
- Dropout: 0.1
- Epochs: 10
- Batch size: 2
- Learning rate: 1e-5
- Precision: bfloat16
- Gradient accumulation: 4
- Scheduler: Constant LR
- Max sequence length: 1024
- Gradient checkpointing: Enabled
- Trainable parameters: ~1.8M (0.05% of 3.75B total)
Usage
Installation
pip install transformers torch datasets pillow
Load Model and Processor
import torch
from transformers import AutoProcessor, AutoModelForVision2Seq
model_name = "aliRafik/invoices-donut-finetuned-Lora-merged"
model = AutoModelForVision2Seq.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16, # Optional: Use float32 if bfloat16 causes issues
attn_implementation="flash_attention_2", # Requires Ampere+ GPU & torch >= 2.0
device_map="auto"
)
processor = AutoProcessor.from_pretrained(
model_name,
trust_remote_code=True,
padding_side='left',
use_fast=True
)
Define Extraction Template
template = """
{
"header": {
"invoice_no": "string",
"invoice_date": "date-time",
"seller": "string",
"client": "string",
"seller_tax_id": "string",
"client_tax_id": "string",
"iban": "string"
},
"items": [
{
"item_desc": "string",
"item_qty": "number",
"item_net_price": "number",
"item_net_worth": "number",
"item_vat": "number",
"item_gross_worth": "number"
}
],
"summary": {
"total_net_worth": "number",
"total_vat": "number",
"total_gross_worth": "number"
}
}
"""
Test on Sample from Dataset
from datasets import load_dataset
import json
from qwen_vl_utils import process_vision_info
# Load the dataset
dataset = load_dataset("katanaml-org/invoices-donut-data-v1")
# Select a sample (e.g., index 0)
sample = dataset['train'][0]
image = sample['image']
ground_truth = sample['ground_truth']
print(json.loads(ground_truth))
# Prepare message
messages = [
{"role": "user", "content": [{"type": "image", "image": image}]}
]
# Process vision info
image_inputs, _ = process_vision_info(messages)
# Apply chat template
text = processor.tokenizer.apply_chat_template(
messages,
template=template,
tokenize=False,
add_generation_prompt=True
)
# Prepare inputs
inputs = processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt"
).to(model.device)
# Generation config
generation_config = {
"do_sample": False,
"num_beams": 1,
"max_new_tokens": 2048
}
# Generate
generated_ids = model.generate(**inputs, **generation_config)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
# Parse and print
try:
extracted_data = json.loads(output_text[0])
print("Extracted Data:", extracted_data)
except json.JSONDecodeError:
print("Raw Output:", output_text[0])
# Compare with ground truth
gt_parsed = json.loads(ground_truth)['gt_parse']
print("Ground Truth:", gt_parsed)
Test on Unseen Data (Custom Image)
from PIL import Image
from io import BytesIO
import requests
# Load from local path
image_path = "/content/image.jpg" # Replace with your path
image = Image.open(image_path)
# Or load from URL
# image_url = "https://example.com/your_invoice.jpg"
# response = requests.get(image_url)
# image = Image.open(BytesIO(response.content))
# Use same inference code as above
Example Results
Input Image:
Extracted Data:
{
"header": {
"invoice_no": "49565075",
"invoice_date": "2019-10-28",
"seller": "Kane-Morgan 968 Carr Mission Apt. 320 Bernardville, VA 28211",
"client": "Garcia Inc 445 Haas Viaduct Suite 454 Michaelhaven, LA 32852",
"seller_tax_id": "964-95-3813",
"client_tax_id": "909-75-5482",
"iban": "GB73WCJ55232646970614"
},
"items": [
{
"item_desc": "Anthropologie Gold Elegant Swan Decorative Metal Bottle Stopper Wine Saver",
"item_qty": 3.0,
"item_net_price": 19.98,
"item_net_worth": 59.94,
"item_vat": 10.0,
"item_gross_worth": 65.93
},
{
"item_desc": "Lolita Happy Retirement Wine Glass 15 Ounce GLS11-5534H",
"item_qty": 1.0,
"item_net_price": 8.0,
"item_net_worth": 8.0,
"item_vat": 10.0,
"item_gross_worth": 8.8
},
{
"item_desc": "Lolita \"Congratulations\" Hand Painted and Decorated Wine Glass NIB",
"item_qty": 1.0,
"item_net_price": 20.0,
"item_net_worth": 20.0,
"item_vat": 10.0,
"item_gross_worth": 22.0
}
],
"summary": {
"total_net_worth": 87.94,
"total_vat": 8.79,
"total_gross_worth": 96.73
}
}
License
Apache-2.0
tags:
vision
document-understanding
invoice-processing
donut
qwen
Citations
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
- Downloads last month
- 3