| {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b38e4634940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b38e46349d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b38e4634a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b38e4634af0>", "_build": "<function ActorCriticPolicy._build at 0x7b38e4634b80>", "forward": "<function ActorCriticPolicy.forward at 0x7b38e4634c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b38e4634ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b38e4634d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7b38e4634dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b38e4634e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b38e4634ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b38e4634f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b38e46381c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718622630372256719, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPddr170pq6J4wkuIbbGLMjOjM6WhI+NwAAgD8AAIA/npGZvm3/bL1RJcy7uXJ7uv5rzD6Z4S47AACAPwAAgD+zUiO9QtJ3Pgklnz3HoIG+6ReOuNYAI70AAAAAAAAAAGZz/b2Y8bg9EOkHvKtfXb5crB69Bn+OvAAAAAAAAAAAjcQYvqyTkj71CwQ9FQaEvvJSdL0OX0o8AAAAAAAAAAA6qgm+/rUBP9YjRz2PnUW+ZSWUPAt6s70AAAAAAAAAAACslr321H+6AukAOwZSArU/wF47lsrjswAAAAAAAIA/zTQnvjSLhT4tbTq9aV19vksECbx93E+9AAAAAAAAAABNhrS9jzITOcvi4rwxMy28bmyHOkCcCj0AAAAAAAAAAADAMro4ZrU/+3yNvRV+jj5l61A6cDKAPAAAAAAAAAAAzZKdPApJgT/ywA++tSNZvpIKVT0qVoG9AAAAAAAAAAAgvxK+5eUPP8VmGTcZSAi+UMjmvC7BMjwAAAAAAAAAAJrFBL4pn1+89j9HPasker0YxMY9fatMPgAAgD8AAIA/M3COvS8cfz/IuFG9zt6gvjRcirvFYAU9AAAAAAAAAACmCJu9KKqeP+Mejr7QiHO+xe9bvXCM+r0AAAAAAAAAAG14j776PEq99tC3vRbpTrwxnK0+bVYUPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+kRTKkl/qMAWyUTWgBjAF0lEdAlYI/v4M4LnV9lChoBkdAceGFOwgTy2gHTT8BaAhHQJWDB0yP+4t1fZQoaAZHQGpttuUD+zdoB01XAWgIR0CVhS4pc5bRdX2UKGgGR0BsDgJeE7GOaAdNMQFoCEdAlYVlCgK4QXV9lChoBkdAcT0FWGRFJGgHTfkBaAhHQJWGiAAhje91fZQoaAZHQHDoaQJXyRVoB01EAWgIR0CVh5ZkkKNRdX2UKGgGR0By3ixX4j8laAdNUQFoCEdAlYhcqvvBrXV9lChoBkdAbIbcer+5v2gHTWgBaAhHQJWI2X+l0o11fZQoaAZHQGyxNelbeM1oB01QAWgIR0CVjIWYF7ladX2UKGgGR0BfNAhje9BbaAdN6ANoCEdAlYzjmGM4tHV9lChoBkdAanLWtlqagGgHTV0BaAhHQJWNI4WDYiB1fZQoaAZHQGwnUnw5NoJoB01sAWgIR0CVj3j/uLJkdX2UKGgGR0BwMMvi97F9aAdNkgFoCEdAlY/yk0rK/3V9lChoBkdAcN57qptJnWgHTU0BaAhHQJWQzGuLaVV1fZQoaAZHQD89BfKISDhoB00RAWgIR0CVkR/GlyimdX2UKGgGR0BulNnIyTIOaAdNXwFoCEdAlZJCed07sHV9lChoBkdAcRJQrc0tRWgHTVYBaAhHQJWoAkgOjIt1fZQoaAZHQHJSPrSmZVpoB007AWgIR0CVqBVz6rNodX2UKGgGR0BuGGkUKzAvaAdNSgFoCEdAlamTOTq0MXV9lChoBkdAUw5OafBeomgHS9NoCEdAlaoA2ZRbbHV9lChoBkdAa9JYg7o0RGgHTVcBaAhHQJWqxD5TIeZ1fZQoaAZHQHEnHwb2lEZoB013AWgIR0CVrGLdN34cdX2UKGgGR0ByOd9Wp6yCaAdNIwFoCEdAlax3JLdvbXV9lChoBkdAb6ViLl3hXWgHTS8BaAhHQJWtPx4IKMN1fZQoaAZHQFC2WLgn+hpoB0vVaAhHQJWtieoUBXF1fZQoaAZHQFzV/UONHYpoB03oA2gIR0CVrnhmGucMdX2UKGgGR0BfxsibDuSfaAdN6ANoCEdAla9rnX/YJ3V9lChoBkdAcJ6EjxCpm2gHTTgBaAhHQJWv7HIZIhB1fZQoaAZHQHIcJyZKFqVoB00kAWgIR0CVr+4vN/vwdX2UKGgGR0ByYEPnSv1UaAdNTgFoCEdAlbA81jy4F3V9lChoBkdAHlRwIdELIGgHTRUBaAhHQJWwdjWkJrt1fZQoaAZHQGEcNRNyo4xoB03oA2gIR0CVsmBVdX1bdX2UKGgGR0BwJz2bobGWaAdNRgFoCEdAlbVK8g6ltXV9lChoBkdAcTClw97ngmgHTY0BaAhHQJW2CJHiFTN1fZQoaAZHQG+Xm1pj+aVoB01sAWgIR0CVt9tJ4B3idX2UKGgGR0BRSzj3mFJyaAdL0WgIR0CVt+ZBcAzYdX2UKGgGR0BwDebLEDQraAdNLwFoCEdAlbhw+IMz/XV9lChoBkdAblnnaFmFrWgHTWgBaAhHQJW5oi2UjcF1fZQoaAZHQG4OQ53kgfVoB01tAWgIR0CVureu3c59dX2UKGgGR0BvS86eXiR5aAdNkAFoCEdAlbtGd3B55nV9lChoBkdAb0wxCY1HfGgHTVsBaAhHQJW7dC6Ymb91fZQoaAZHQHHsZcX3xnZoB01DAWgIR0CVvDPJ7sv7dX2UKGgGR0Br2q3mV7hOaAdNWAFoCEdAlbxhrN4Z/HV9lChoBkdAcCa0mdAgPmgHTVcBaAhHQJW83544ZMt1fZQoaAZHQG3L6QFLWZtoB02kAWgIR0CVwFNYr8R+dX2UKGgGR0BueXKr7wazaAdNcwFoCEdAlcD9bgTAWXV9lChoBkdAar2Oy3Td+GgHTVYBaAhHQJXDDeDWbw11fZQoaAZHQG7gAz544ZNoB01ZAWgIR0CVw/SeRPoFdX2UKGgGR0BuVM/jbSJCaAdNSgFoCEdAlcUweq7yx3V9lChoBkdAbB2HC4z7/GgHTVgBaAhHQJXGDr2QGOd1fZQoaAZHQHH29xEORT1oB00/AWgIR0CVyR3BHkLhdX2UKGgGR0BxJRB8hLXdaAdNlgFoCEdAlcpVd5Y5k3V9lChoBkdAcmCrD63y7WgHTTgBaAhHQJXKdJNCZ4R1fZQoaAZHQG+9qmbb1yxoB01kAWgIR0CVypE87p3YdX2UKGgGR0Btg0GxD9fkaAdNZwFoCEdAlcufwNLDh3V9lChoBkdAcDhYdQwbl2gHTa8BaAhHQJXNN3fQ8fV1fZQoaAZHQG8R4msvIwNoB010AWgIR0CVzV3m3fALdX2UKGgGR0BtGaD9OymiaAdNUgFoCEdAleNq/Efkm3V9lChoBkdAYvwuB+Wnj2gHTegDaAhHQJXjmoegctJ1fZQoaAZHQGw5Lt/nW8RoB03BAWgIR0CV4/KJl8PXdX2UKGgGR0BdKvnnuAqeaAdN5gNoCEdAleUByn1nNHV9lChoBkdAc0Vhisny/mgHTXQBaAhHQJXm97laKUF1fZQoaAZHQHIyw4OtnwpoB01ZAWgIR0CV58B6rvLHdX2UKGgGR0BtQ8bo8p1BaAdNdAFoCEdAlefMjeKsMnV9lChoBkdAcLvoGpuMuWgHTVEBaAhHQJXoA85jpcJ1fZQoaAZHQHDesA/9pAVoB005AWgIR0CV6fRNATqTdX2UKGgGR0BwIUsiB5HFaAdNTAFoCEdAleqJzDGcWnV9lChoBkdAakGlpGnXNGgHTVcBaAhHQJXrBCmdiDx1fZQoaAZHQGwGPD50r9VoB01XAWgIR0CV6812q1gIdX2UKGgGR0Bul/k3juKGaAdNPgFoCEdAlev6IJqqO3V9lChoBkdAbHIIu5BkZ2gHTVEBaAhHQJXstNYbKih1fZQoaAZHQG7T0mMOwxFoB01CAWgIR0CV7xhKlHjIdX2UKGgGR0BxsA3PzFuOaAdNPAFoCEdAle9lrRBu43V9lChoBkdAcmQcCo0hvGgHTSUBaAhHQJXxvaIvalF1fZQoaAZHQG0Y7Qb+98JoB01iAWgIR0CV8gZSNwR5dX2UKGgGR0BvPX9kz41xaAdNPgJoCEdAlfLMlb/wRXV9lChoBkdAcYjZXdTHbWgHTagBaAhHQJXzYETxoZh1fZQoaAZHQGnUVGCqZMNoB008AWgIR0CV84guRLbpdX2UKGgGR0BwA57rs0HhaAdNPgFoCEdAlfPL6Hj6vnV9lChoBkdAcTknn+yZ8mgHTVwBaAhHQJX0iDRMN+d1fZQoaAZHQHA6xA4XGfhoB01RAWgIR0CV9kqWTot+dX2UKGgGR0BwPIOLBKtgaAdNQgFoCEdAlfem0eEIxHV9lChoBkdAbGEDdP+GXWgHTUcBaAhHQJX4CzSkTHt1fZQoaAZHQG9VB/RVp9JoB011AWgIR0CV+EjAzpHJdX2UKGgGR0BvFjPa+N96aAdNTAFoCEdAlfkBWxQizXV9lChoBkdAcT/VRUFSsWgHTZUBaAhHQJX5yf/WDpV1fZQoaAZHQG0ELns9jgBoB01ZAWgIR0CV/JaJAMUidX2UKGgGR0BlvEdLg4wRaAdN6ANoCEdAlf07y6MBIXV9lChoBkdAcXUgtOEdvWgHTYIBaAhHQJX/N0Syt3h1fZQoaAZHQGu3RW912aFoB01PAWgIR0CWABH31zySdX2UKGgGR0Bvgv16E8JVaAdNfgFoCEdAlgJSxJNCaHV9lChoBkdAcBkfdyksSWgHTWgBaAhHQJYDSyv9tMx1fZQoaAZHQG9kGm1pj+doB01sAWgIR0CWA8KbayrxdX2UKGgGR0BwgH+T/yXlaAdNkAFoCEdAlgSZw4sEq3V9lChoBkdAcIgETg2qDWgHTU4BaAhHQJYGXZCfHxV1fZQoaAZHQG/i8lgMMJBoB02EAWgIR0CWBoyimEXddX2UKGgGR0Bwz3wgDA8CaAdNXQFoCEdAlgj2gam4zHV9lChoBkdAcFB6GgzxgGgHTZYBaAhHQJYKr0h/y5J1fZQoaAZHQGv9HFHavidoB01MAWgIR0CWDLLxI8QqdX2UKGgGR0BuzuDnNgSfaAdNVwFoCEdAlg27UCq6v3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |