Create translation.py
Browse filesAdded an script for allowing it to translate by a pipeline.
- translation.py +69 -0
translation.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import sys
|
| 3 |
+
import typing as tp
|
| 4 |
+
import unicodedata
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from sacremoses import MosesPunctNormalizer
|
| 8 |
+
from sentence_splitter import SentenceSplitter
|
| 9 |
+
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer
|
| 10 |
+
|
| 11 |
+
L1 = "spa_Latn"
|
| 12 |
+
L2 = "agr_Latn"
|
| 13 |
+
LANGUAGES = {
|
| 14 |
+
"Spanish | spa": L1,
|
| 15 |
+
"Awajun | agr ": L2,
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
def get_non_printing_char_replacer(replace_by: str = " ") -> tp.Callable[[str], str]:
|
| 19 |
+
non_printable_map = {
|
| 20 |
+
ord(c): replace_by
|
| 21 |
+
for c in (chr(i) for i in range(sys.maxunicode + 1))
|
| 22 |
+
# same as \p{C} in perl
|
| 23 |
+
# see https://www.unicode.org/reports/tr44/#General_Category_Values
|
| 24 |
+
if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
def replace_non_printing_char(line) -> str:
|
| 28 |
+
return line.translate(non_printable_map)
|
| 29 |
+
|
| 30 |
+
return replace_non_printing_char
|
| 31 |
+
|
| 32 |
+
class TextPreprocessor:
|
| 33 |
+
"""
|
| 34 |
+
Mimic the text preprocessing made for the NLLB model.
|
| 35 |
+
This code is adapted from the Stopes repo of the NLLB team:
|
| 36 |
+
https://github.com/facebookresearch/stopes/blob/main/stopes/pipelines/monolingual/monolingual_line_processor.py#L214
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def __init__(self, lang="en"):
|
| 40 |
+
self.mpn = MosesPunctNormalizer(lang=lang)
|
| 41 |
+
self.mpn.substitutions = [
|
| 42 |
+
(re.compile(r), sub) for r, sub in self.mpn.substitutions
|
| 43 |
+
]
|
| 44 |
+
self.replace_nonprint = get_non_printing_char_replacer(" ")
|
| 45 |
+
|
| 46 |
+
def __call__(self, text: str) -> str:
|
| 47 |
+
clean = self.mpn.normalize(text)
|
| 48 |
+
clean = self.replace_nonprint(clean)
|
| 49 |
+
# replace ππ―ππ«π π’π°π π by Francesca
|
| 50 |
+
clean = unicodedata.normalize("NFKC", clean)
|
| 51 |
+
return clean
|
| 52 |
+
|
| 53 |
+
def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False):
|
| 54 |
+
"""Apply a sentence splitter and return the sentences and all separators before and after them"""
|
| 55 |
+
if fix_double_space:
|
| 56 |
+
text = re.sub(" +", " ", text)
|
| 57 |
+
sentences = splitter.split(text)
|
| 58 |
+
fillers = []
|
| 59 |
+
i = 0
|
| 60 |
+
for sentence in sentences:
|
| 61 |
+
start_idx = text.find(sentence, i)
|
| 62 |
+
if ignore_errors and start_idx == -1:
|
| 63 |
+
# print(f"sent not found after {i}: `{sentence}`")
|
| 64 |
+
start_idx = i + 1
|
| 65 |
+
assert start_idx != -1, f"sent not found after {i}: `{sentence}`"
|
| 66 |
+
fillers.append(text[i:start_idx])
|
| 67 |
+
i = start_idx + len(sentence)
|
| 68 |
+
fillers.append(text[i:])
|
| 69 |
+
return sentences, fillers
|